Understanding and Improving Electrochemical Carbon Dioxide Capture

了解和改进电化学二氧化碳捕获

基本信息

  • 批准号:
    MR/Y034244/1
  • 负责人:
  • 金额:
    $ 75.79万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2025
  • 资助国家:
    英国
  • 起止时间:
    2025 至 无数据
  • 项目状态:
    未结题

项目摘要

This transformative research fellowship will advance electrochemical carbon dioxide capture as a greenhouse gas mitigation technology.To limit global warming to 1.5C and avoid catastrophic climate change we must greatly reduce our emissions of greenhouse gases. To this end the UK has recently committed to net zero greenhouse gas emissions by the year 2050. Carbon dioxide capture and storage (CCS) is a critical technology that must be deployed at scale if the UK is to meet this goal. CCS is a process where carbon dioxide is first captured at point sources (industrial processes, fossil fuel power) or directly from the atmosphere, before subsequently being stored underground.State of the art CCS technology uses amine molecules to absorb carbon dioxide. Subsequently a large amount of energy must be supplied in the form of heat (or a vacuum) to regenerate the amines and release pure carbon dioxide for storage, thereby increasing the cost of CCS. The amine process also suffers from (i) limited carbon dioxide capacities, (ii) amine evaporation into the atmosphere and (iii) amine degradation in the presence of oxygen and other contaminant gases.This programme explores the use of electricity to capture and release carbon dioxide as a more energy-efficient method of CCS that can overcome the limitations of amines. In electrochemical carbon dioxide capture, the charging of an energy storage device such as a battery or a supercapacitor causes the selective absorption of carbon dioxide. When the device is discharged, pure carbon dioxide is released (for subsequent storage), and much of the energy supplied during charging is recovered. Initial work suggests that this technology may be more energy-efficient than existing approaches, and there is still vast room for improvement, especially if the molecular mechanisms of capture can be understood and manipulated.We will (i) advance the understanding of electrochemical carbon dioxide capture and (ii) discover new materials and devices that capture carbon dioxide more efficiently. Specifically we will focus on electrochemical carbon dioxide capture by supercapacitors. We will measure the amount of carbon dioxide that can be captured by these devices and we will optimise the electrode and electrolyte materials to improve performance.A proper understanding of the molecular mechanism of electrochemical carbon dioxide capture may lead to breakthroughs for this technology. A key thrust of the programme is therefore mechanistic studies of the molecular-level capture mechanism. We will use a suite of experimental techniques to study the chemical structures of the electrode materials, and we will correlate these structures with their carbon capture properties. We will develop nuclear magnetic resonance studies that allow the molecular form of the bound carbon dioxide to be determined at different stages of the capture process.Our mechanistic studies will inform the design and synthesis of improved materials for electrochemical carbon dioxide capture. We will synthesise the next generation of materials with (i) larger carbon dioxide uptake capacities, (ii) lower energy requirements for regeneration and (iii) faster uptake rates. New technology generated by this work will be prototyped and developed into flow systems. The developed technology will generate clean economic growth and will help the UK meet its 2050 net-zero emissions target. The research background of ACF combined with the assembled team of partners and excellent institutional support will lead to new knowledge and technology that will make the UK world-leading in electrochemical carbon dioxide capture
这项变革性研究奖学金将把电化学二氧化碳捕获作为一种温室气体缓解技术。为了将全球变暖限制为1.5C并避免灾难性的气候变化,我们必须大大减少我们对温室气体的排放。为此,英国最近承诺到2050年净零温室气体排放。二氧化碳捕获和储存(CCS)是一项关键技术,如果英国要实现这一目标,则必须大规模部署。 CCS是一个过程,在该过程中,二氧化碳首先在点源(工业过程,化石燃料动力)或直接从大气中捕获,然后才在地下储存之前。随后,必须以热量(或真空)的形式提供大量能量,以再生胺并释放纯二氧化碳以存储,从而增加了CC的成本。胺过程还遭受(i)二氧化碳的能力有限,(ii)在存在氧气和其他污染物的情况下,胺蒸发到大气中,(iii)胺降解。该程序探索了电力的使用来捕获和释放二氧化碳作为更节能的CC的能力,这些方法可以超过ccs的限制。在电化学二氧化碳捕获中,电池或超级电容器等能量存储装置的充电会导致二氧化碳的选择性吸收。当设备放电后,释放纯二氧化碳(用于后续存储),并回收了充电期间提供的大部分能量。最初的工作表明,这项技术可能比现有方法更节能,并且仍然有很大的改进空间,尤其是如果可以理解和操纵捕获的分子机制。具体而言,我们将专注于超级电容器捕获二氧化碳的电化学。我们将测量这些设备可以捕获的二氧化碳的量,并将优化电极和电解质材料以提高性能。对电化学二氧化碳捕获的分子机制的正确理解可能会导致该技术的突破。因此,该程序的关键目的是分子级捕获机制的机械研究。我们将使用一套实验技术来研究电极材料的化学结构,并将这些结构与它们的碳捕获特性相关联。我们将开发核磁共振研究,允许在捕获过程的不同阶段确定结合二氧化碳的分子形式。我们将使用(i)较大的二氧化碳吸收能力,(ii)较低的再生能量需求和(iii)更快的摄取速率来合成下一代材料。这项工作生成的新技术将是原型的,并发展为流系统。开发的技术将产生清洁的经济增长,并将帮助英国实现其2050年零排放的目标。 ACF的研究背景与聚集的合作伙伴团队和出色的机构支持相结合,将导致新的知识和技术,这将使英国在电化学二氧化碳捕获中成为世界领先

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Forse其他文献

Alexander Forse的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Forse', 18)}}的其他基金

Transforming Supercapacitors by using Metal-Organic Framework Electrodes
使用金属有机框架电极改造超级电容器
  • 批准号:
    EP/X042693/1
  • 财政年份:
    2023
  • 资助金额:
    $ 75.79万
  • 项目类别:
    Research Grant
Understanding and Improving Electrochemical Carbon Dioxide Capture
了解和改进电化学二氧化碳捕获
  • 批准号:
    MR/T043024/1
  • 财政年份:
    2021
  • 资助金额:
    $ 75.79万
  • 项目类别:
    Fellowship
Charged Adsorbents for Capture of Carbon Dioxide Directly from Air
用于直接从空气中捕获二氧化碳的带电吸附剂
  • 批准号:
    EP/V048090/1
  • 财政年份:
    2021
  • 资助金额:
    $ 75.79万
  • 项目类别:
    Research Grant

相似国自然基金

通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
  • 批准号:
    12305261
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
利用风云极轨卫星微波资料同化改进东北冷涡暴雨预报
  • 批准号:
    42375004
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
面向超级计算机的改进粒子群算法在大规模WSN中的应用研究
  • 批准号:
    62372495
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于云聚类的气溶胶-云相互作用模式评估改进研究
  • 批准号:
    42375073
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
智能互联产品动态质量过程控制与迭代改进方法研究
  • 批准号:
    72371183
  • 批准年份:
    2023
  • 资助金额:
    39 万元
  • 项目类别:
    面上项目

相似海外基金

Improving the reproducibility of manufacturing a polymer-based electrochemical sensor
提高聚合物电化学传感器制造的再现性
  • 批准号:
    10073816
  • 财政年份:
    2023
  • 资助金额:
    $ 75.79万
  • 项目类别:
    Collaborative R&D
Understanding and Improving Electrochemical Carbon Dioxide Capture
了解和改进电化学二氧化碳捕获
  • 批准号:
    MR/T043024/1
  • 财政年份:
    2021
  • 资助金额:
    $ 75.79万
  • 项目类别:
    Fellowship
Establishment of molecular design guidelines for enzyme mutants by principal component analysis aiming at improving enzyme electrochemical reaction
通过主成分分析建立酶突变体分子设计指南,旨在改善酶电化学反应
  • 批准号:
    21K14782
  • 财政年份:
    2021
  • 资助金额:
    $ 75.79万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Understanding and Improving Electrochemical Carbon Capture by Supercapacitors
了解和改进超级电容器的电化学碳捕获
  • 批准号:
    2482377
  • 财政年份:
    2020
  • 资助金额:
    $ 75.79万
  • 项目类别:
    Studentship
UNS: Improving Energy Density of Layered Vanadium Pentoxide Nanostructure for Aqueous Electrochemical Energy Storage
UNS:提高用于水相电化学储能的层状五氧化二钒纳米结构的能量密度
  • 批准号:
    1511014
  • 财政年份:
    2015
  • 资助金额:
    $ 75.79万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了