CAREER: Understanding the Interdependence of the Microenvironment and Nuclear Organization in Stem Cell Aging

职业:了解干细胞衰老过程中微环境和核组织的相互依赖性

基本信息

项目摘要

The dramatic increase in the elderly population presents new challenges for our society, and a critical effector of healthy lifespan is functioning skeletal muscle. Despite the significant personal and societal costs of age-related muscle atrophy and weakness, only modest progress has been made in understanding this degenerative process. One critical factor is a reduction in number and function of adult stem cells with aging. Hence, a mechanistic understanding of how muscle stem cells become dysfunctional in old age is needed. The research objective of this Faculty Early Career Development (CAREER) project is to establish systems to study how stem cells receive and store information in their nuclei (which contain genetic information and controls and regulates cell activities) during aging. The outcome will be enhanced understanding of the stem cell aging process in a unified and controllable manner. The primary educational objective of this project is to develop a series of stories that focus on introducing concepts of stem cells and genomics to under-represented minority (URM) students in K-3. These stories aim to increase scientific literacy and reduce the language barrier for URM students to engage with STEM principles and genomics at an early age, and positively portray underrepresented Minorities using Integrative Genomics, Human stem cells, and TechnologY (MIGHTY).The investigator's long-term research goal is to develop and optimize technologies and therapeutics that prevent or delay age-related declines in skeletal muscle function that occur in the elderly population. A known critical contributor of sarcopenia (age-induced skeletal muscle wasting) is muscle stem cell dysfunction, which is regulated by the packaging of the genome in the nucleus. Thus, in keeping with the long-term goal, this NSF CAREER project aims to elucidate the sensitive relationship between nuclear organization and the stem cell microenvironment in aging using in situ genome editing, microfluidics, biomaterials and integrative genomic assays. The Research Plan is organized under two objectives. The FIRST Objective is to demonstrate that muscle stem cell dysfunction observed in aging is driven by 3D genome misfolding. An in-situ genome editing (CRISPR-Cas9) system in muscle stem cells will be used to manipulate heterochromatin and hierarchical nuclear organization. High-resolution 3D imaging coupled with epigenomic mapping will be used to contrast the effects of these perturbations with muscle stem cells isolated from different stages of life (youth, middle-age and old age). Successful completion of these experiments will demonstrate how intrinsic alterations through genome folding engender stem cell dysfunction and remodeling of the microenvironment as well as expose the relative susceptibility of each part of the genome to deleterious changes that occur in aging. The SECOND Objective is to establish that the aberrant extracellular matrix produced during aging engenders chromatin defects that regulate muscle stem cell expansion. Envelope muscle stem cells on myofibers with engineered biomaterials that replicate aspects of an aging endomysium will be used to assess the effect on chromatin architecture and stem cell expansion. Extracellular matrix density, elastic moduli, composition and structure surrounding muscle stem cells will be varied to determine how different types of modifications converge onto nuclear organization and impact clonal dynamics. Successful completion of these experiments will reveal how muscle stem cells transduce alterations in their microenvironment into chromatin remodeling during aging and how these adjustments drive variations in proliferative behavior. The ability to make meaningful connections between these innovative engineering systems and critically important biological process in aging will facilitate construction of a molecular-scale, integrated understanding of the stem cell aging process that can help advance therapeutics, and fulfill knowledge gaps.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
老年人口的急剧增长给我们的社会带来了新的挑战,健康寿命的关键效应因素正在发挥骨骼肌的作用。尽管与年龄相关的肌肉萎缩和弱点的个人和社会成本巨大,但在理解这一退化过程时只取得了适度的进步。一个关键因素是衰老成年干细胞的数量和功能减少。 因此,需要对肌肉干细胞在老年中如何功能失调的机械理解。该教师早期职业发展(职业)项目的研究目标是建立系统,以研究干细胞在衰老期间如何在其核中接收和存储信息(其中包含遗传信息和控制并调节细胞活动)。结果将是以统一和可控制的方式增强对干细胞老化过程的理解。该项目的主要教育目标是开发一系列故事,这些故事着重于将干细胞和基因组学概念引入K-3中代表性不足的少数群体(URM)学生。 These stories aim to increase scientific literacy and reduce the language barrier for URM students to engage with STEM principles and genomics at an early age, and positively portray underrepresented Minorities using Integrative Genomics, Human stem cells, and TechnologY (MIGHTY).The investigator's long-term research goal is to develop and optimize technologies and therapeutics that prevent or delay age-related declines in skeletal muscle function that occur in the elderly population.肌肉减少症(年龄引起的骨骼肌浪费)的已知关键因素是肌肉干细胞功能障碍,该功能受基因组在细胞核中的包装进行调节。 因此,为了与长期目标保持一致,该NSF职业项目旨在阐明使用原位基因组编辑,微流体,生物材料和综合基因组学分析的核组织与干细胞微环境之间的敏感关系。研究计划是在两个目标下组织的。 第一个目的是证明衰老中观察到的肌肉干细胞功能障碍是由3D基因组错误折叠驱动的。肌肉干细胞中的原位基因组编辑(CRISPR-CAS9)系统将用于操纵异染色质和分层核组织。高分辨率3D成像与表观基因组映射相结合将用于对比这些扰动的作用与从不同阶段(青年,中年和老年)分离的肌肉干细胞的作用。这些实验的成功完成将证明如何通过基因组折叠导致干细胞功能障碍和微环境的重塑以及揭示基因组每个部分对衰老发生有害变化的相对敏感性的固有改变。第二个目标是确定在老化产生的染色质缺陷中产生的异常细胞外基质会调节肌肉干细胞膨胀。带有工程生物材料的肌纤维上的包膜肌肉干细胞复制衰老内体的各个方面,用于评估对染色质结构和干细胞膨胀的影响。细胞外基质密度,弹性模量,组成和肌肉干细胞周围的结构将变化,以确定不同类型的修饰如何融合到核组织上并影响克隆动力学。这些实验的成功完成将揭示肌肉干细胞在衰老期间如何转化其微环境中的改变其微环境中的染色质重塑,以及这些调整如何驱动增殖行为的变化。在衰老中建立有意义的联系和至关重要的生物学过程之间建立有意义的联系的能力将有助于构建分子规模的,对干细胞老化过程的综合理解,这些过程可以帮助提高治疗障碍,并实现知识差距。该奖项反映了NSF的法定任务,并通过评估基金会的范围来反映出支持者的支持者,并通过基金会的范围进行了评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carlos Aguilar其他文献

Improving the Nitrogen Cycling in Livestock Systems Through Silvopastoral Systems
通过林牧系统改善畜牧系统的氮循环
  • DOI:
    10.1007/978-981-13-8660-2_7
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Sarabia;Francisco J. Solorio;L. Ramírez;A. Ayala;Carlos Aguilar;J. Ku;C. Almeida;Rafael Cassador;B. Alves;R. Boddey
  • 通讯作者:
    R. Boddey
Some elements on the situation of multiple sclerosis in the European Union
关于欧盟多发性硬化症情况的一些要点
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Carlos Aguilar;Thomas Ricosset
  • 通讯作者:
    Thomas Ricosset
Diagnosis of deep venous thrombosis in the elderly: a higher D-dimer cut-off value is better?
老年人深静脉血栓的诊断:D-二聚体临界值越高越好?
  • DOI:
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    10.1
  • 作者:
    Carlos Aguilar;A. Martínez;C. D. Rio;M. Vazquez
  • 通讯作者:
    M. Vazquez
Native Trees and Shrubs for Ecosystems Services and the Redesign of Resilient Livestock Production Systems in the Mexican Neotropics
墨西哥新热带地区生态系统服务的本土树木和灌木以及弹性畜牧生产系统的重新设计
  • DOI:
    10.1007/978-3-319-66426-2_16
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Solorio;L. Ramírez;S. Basu;Liz Trenchard;L. Sarabia;Julia E. Wright;Carlos Aguilar;Baldomero Solorio;A. Ayala;J. Ku
  • 通讯作者:
    J. Ku
Fully Embedded Flow Control Device for Microfluidic Applications
适用于微流体应用的全嵌入式流量控制装置
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Carlos Aguilar;M. Esparza;Franco Chacón;Diana Aráiz;Brenda Soto;Juan F Yee;Liza P. Velarde;Alejandro Abarca
  • 通讯作者:
    Alejandro Abarca

Carlos Aguilar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于场景理解的全景视频智能压缩关键技术研究
  • 批准号:
    62371310
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
典型热带生态系统大气零价汞源汇格局变化及机理解析
  • 批准号:
    42377255
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
面向智能视频理解的时序结构化解析与语义细致化识别研究
  • 批准号:
    62306239
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度理解的大规模互联网虚假新闻检测研究
  • 批准号:
    62302333
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SlCNR8调控番茄植株衰老的机理解析
  • 批准号:
    32360766
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Understanding interdependence in early adulthoods: Learning from care experienced young people who participated in Lifelong Links
了解成年早期的相互依赖:向参加终身链接的有护理经验的年轻人学习
  • 批准号:
    2877262
  • 财政年份:
    2023
  • 资助金额:
    $ 51.21万
  • 项目类别:
    Studentship
CAREER: Understanding the Interdependence of Cation and Anion Adsorption for Electrocatalytic Nitrate Reduction
职业:了解电催化硝酸盐还原中阳离子和阴离子吸附的相互依赖性
  • 批准号:
    2236770
  • 财政年份:
    2023
  • 资助金额:
    $ 51.21万
  • 项目类别:
    Continuing Grant
すべての児童生徒にとって効果的な協同学習モデルの開発
开发对所有学生都有效的协作学习模型
  • 批准号:
    21K02523
  • 财政年份:
    2021
  • 资助金额:
    $ 51.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CRISP Type 2/Collaborative Research: Understanding the Benefits and Mitigating the Risks of Interdependence in Critical Infrastructure Systems
CRISP 类型 2/协作研究:了解关键基础设施系统相互依赖的好处并减轻风险
  • 批准号:
    1735354
  • 财政年份:
    2018
  • 资助金额:
    $ 51.21万
  • 项目类别:
    Standard Grant
CRISP Type 2/Collaborative Research: Understanding the Benefits and Mitigating the Risks of Interdependence in Critical Infrastructure Systems
CRISP 类型 2/协作研究:了解关键基础设施系统相互依赖的好处并减轻风险
  • 批准号:
    1735513
  • 财政年份:
    2018
  • 资助金额:
    $ 51.21万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了