EAGER: CAS-Climate: AI-driven Probabilistic Technique, Quantile Regression based Artificial Neural Network Model, for Bias Correction and Downscaling of CMIP6 Projections

EAGER:CAS-Climate:人工智能驱动的概率技术、基于分位数回归的人工神经网络模型,用于 CMIP6 投影的偏差校正和缩小

基本信息

  • 批准号:
    2151651
  • 负责人:
  • 金额:
    $ 29.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-12-15 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

Global Climate Models (GCMs) are typically used to develop climate projections to predict extreme events (e.g., droughts, floods). Spatial resolution of GCM projections has improved due to increasing computational power, but is still inadequate for watershed-scale applications where extreme event prediction is needed to enable planning. The research undertaken in this project will develop an AI-based technique to improve hydroclimatic projections at the watershed scale. AI techniques are quite powerful in modeling global climate data and could develop finer spatial and temporal future climatic projections. The potential impact is improved planning for, and resilience to, extreme events at the watershed scale.This research will develop an AI-based probabilistic approach that uses a Quantile Regression based Artificial Neural Network (ANN) (QR-AI) model for bias-corrected and statistically downscaled (BCSD) Coupled Model Intercomparison Projects (CMIP6) projections. Specifically, the research will develop three BCSD data products of CMIP6 projections over the continental U.S. (CONUS): 1) Historical simulations (1950-2014) of precipitation and temperature of GCMs; 2) Near-term (30 year) hindcasts of precipitation and temperature from relevant GCMs and 3) Near-term (30 year) projections of precipitation and temperature for four different Shared Socioeconomic Pathways, which are represented by CO2 emission and mitigation scenarios. Developing BCSD of both hindcasts and historical projections will provide an opportunity to validate the QR-AI methodology by comparing the uncertainty in the estimated climate variables with the observed marginal density of precipitation and temperature over the CONUS. The BCSD CMIP6 products on precipitation and temperature will be developed using the AI method for the entire CONUS and disseminated through the project website. BCSD data will also be archived in figshare and github for dissemination. Additionally, the investigators will work with focused user groups, such as reservoir management and social media, for active dissemination of the developed BCSD products.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
全球气候模型 (GCM) 通常用于制定气候预测,以预测极端事件(例如干旱、洪水)。由于计算能力的提高,GCM 投影的空间分辨率有所提高,但对于需要极端事件预测来实现规划的分水岭规模应用来说仍然不够。 该项目进行的研究将开发一种基于人工智能的技术,以改善流域规模的水文气候预测。人工智能技术在模拟全球气候数据方面非常强大,可以开发更精细的空间和时间未来气候预测。潜在的影响是改善对分水岭规模的极端事件的规划和恢复能力。这项研究将开发一种基于人工智能的概率方法,该方法使用基于分位数回归的人工神经网络(ANN)(QR-AI)模型来消除偏差修正和统计缩小 (BCSD) 耦合模型比较项目 (CMIP6) 预测。具体来说,该研究将开发美国大陆(CONUS)CMIP6预测的三个BCSD数据产品:1)GCM降水和温度的历史模拟(1950-2014年); 2) 来自相关 GCM 的近期(30 年)降水和温度后报,以及 3)四种不同共享社会经济路径的近期(30 年)降水和温度预测,以二氧化碳排放和减缓情景为代表。开发后报和历史预测的 BCSD 将通过将估计气候变量的不确定性与观测到的美国​​大陆降水和温度边际密度进行比较,为验证 QR-AI 方法提供机会。关于降水和温度的 BCSD CMIP6 产品将使用人工智能方法为整个 CONUS 开发,并通过项目网站传播。 BCSD数据也将存档在figshare和github中以供传播。此外,研究人员将与水库管理和社交媒体等重点用户群体合作,积极传播开发的 BCSD 产品。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的评估进行评估,被认为值得支持。影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sankarasubraman Arumugam其他文献

Sankarasubraman Arumugam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sankarasubraman Arumugam', 18)}}的其他基金

CAS-Climate: Understanding the Changing Climatology, Organizing Patterns and Source Attribution of Hazards of Floods over the Southcentral and Southeast US
CAS-气候:了解美国中南部和东南部洪水灾害的气候变化、组织模式和来源归因
  • 批准号:
    2208562
  • 财政年份:
    2022
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Collaborative Research:NSF-NSFC:Improving FEW system sustainability over the SEUS and NCP: A cross-regional synthesis considering uncertainties in climate and regional development
合作研究:NSF-NSFC:提高 SEUS 和 NCP 上的 FEW 系统可持续性:考虑气候和区域发展不确定性的跨区域综合
  • 批准号:
    1805293
  • 财政年份:
    2018
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Cybersees Type 2: Cyber-Enabled Water and Energy Systems Sustainability Utilizing Climate Information
Cyber​​sees 类型 2:利用气候信息实现网络支持的水和能源系统可持续性
  • 批准号:
    1442909
  • 财政年份:
    2014
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Conference: Seasonal to Interannual Hydroclimate Forecasts and Water Management, Portland, OR, July/August 2013
会议:季节到年际水文气候预测和水资源管理,俄勒冈州波特兰,2013 年 7 月/8 月
  • 批准号:
    1311751
  • 财政年份:
    2013
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
WSC- Category 3: Collaborative Research: Water Sustainability under Near-term Climate Change : A cross-regional analysis incorporating socio-ecological feedbacks and adaptations
WSC-类别 3:合作研究:近期气候变化下的水可持续性:纳入社会生态反馈和适应的跨区域分析
  • 批准号:
    1204368
  • 财政年份:
    2012
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Continuing Grant
CAREER: Climate Informed Uncertainty Analyses for Integrated Water Resources Sustainability
职业:综合水资源可持续性的气候知情不确定性分析
  • 批准号:
    0954405
  • 财政年份:
    2010
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Continuing Grant
Improved water resources sustainability utilizing multi-time scale streamflow forecasts
利用多时间尺度水流预测提高水资源可持续性
  • 批准号:
    0756269
  • 财政年份:
    2008
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Continuing Grant

相似国自然基金

兼容等温扩增的双CRISPR/Cas12方法体系构建及其多重精准监测肉及肉制品食用安全的应用研究
  • 批准号:
    82373629
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
硫酸盐还原菌快速分型光电化学Cas14a传感机制的研究
  • 批准号:
    42306225
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于内源CRISPR/Cas与模块化报告系统的多杀菌素调控机制与高产策略研究
  • 批准号:
    32370064
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于CRISPR/Cas系统的活细胞内特异性mRNA标志物的单分子成像分析研究
  • 批准号:
    22304008
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
通过构建Pgr-Cas9工具小鼠研究Hippo通路效应因子Yap1/Wwtr1在蜕膜化过程中的作用
  • 批准号:
    32370913
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: CAS- Climate -- Air-quality-related environmental justice impacts of decarbonization scenarios
职业:CAS-气候——脱碳情景与空气质量相关的环境正义影响
  • 批准号:
    2339462
  • 财政年份:
    2024
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Continuing Grant
CAS-Climate: Understanding the fundamental redox chemistry and transport of chloroaluminate anions in ionic liquid electrolytes to develop earth-abundant aluminum ion battery
CAS-Climate:了解离子液体电解质中氯铝酸盐阴离子的基本氧化还原化学和传输,以开发地球上丰富的铝离子电池
  • 批准号:
    2427215
  • 财政年份:
    2024
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
CAS-Climate: CAREER: A Unified Zero-Carbon-Driven Design Framework for Accelerating Power Grid Deep Decarbonization (ZERO-ACCELERATOR)
CAS-气候:职业:加速电网深度脱碳的统一零碳驱动设计框架(零加速器)
  • 批准号:
    2338158
  • 财政年份:
    2024
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Continuing Grant
CAREER: CAS-Climate -- A modeling framework to understand the environmental and equity impacts of building decarbonization retrofits
职业:CAS-Climate——了解建筑脱碳改造对环境和公平影响的建模框架
  • 批准号:
    2339386
  • 财政年份:
    2024
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Continuing Grant
CAREER: CAS-Climate: Addressing Climate Change Impacts on Urban Water Affordability
职业:CAS-气候:应对气候变化对城市水承受能力的影响
  • 批准号:
    2337668
  • 财政年份:
    2024
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了