CAREER: Study of Electronic and Magnetic Topological Phenomena in Two Dimensional Quantum Materials with Scanning Probe Microscopy

职业:利用扫描探针显微镜研究二维量子材料中的电子和磁拓扑现象

基本信息

  • 批准号:
    2145735
  • 负责人:
  • 金额:
    $ 73.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

Non-technical description:The mathematical concept of topology, which studies global geometrical properties of shapes, such as the number of holes or surfaces, that remain unchanged when the objects are smoothly deformed, has been applied to understand and discover novel electronic and magnetic properties in solid state materials. This project studies two types of such phenomena in two-dimensional materials that are only a few atomic layers thick. The first is 2D materials that host topological edge conduction. In these materials, the interior of sample is insulating while electrical current can only flow along the edges. This kind of edge conduction can greatly reduce the energy loss during the current flow, therefore, it can potentially be used to develop next generation of energy efficient electronic devices. The second type of phenomena occurs in 2D magnetic materials where the local magnetic poles wind around in a swirling pattern. The winding directions can be used for information storage as their topological properties make them robust against external perturbation thus capable of retaining information for longer time. This project further integrates an education component to engage both undergraduate and high school students in multidisciplinary research in the field of quantum materials and nanotechnology. The PI will develop research modules that are suitable for students at all levels such as building demo nano characterization tools that involve both hardware design and electronics development. The demo projects provide a bridge for the students to participate in the proposed research activities. Under-represented groups will be particularly encouraged and recruited in the education programs.Technical description:Atomic layered materials provide a rich platform to study topological physics in two dimensions. This project investigates several families of novel 2D materials and their heterostructures to characterize their topological states and explore new methods to manipulate and engineer their topological properties. The first material system is the recently discovered topological magnet, MnBi2Te4, which combines magnetism and topological order in one material and is a Chern insulator in few-layer samples. The proposed research aims to characterize key properties in few-layer samples that are important for the topological order, including the topological gap and the magnetic anisotropy. The second material system is graphene based moiré heterostructures, including twisted bilayer graphene aligned on hBN and graphene interfaced with moiré heterostructures of transition metal dichalcogenides. The formation of moiré superlattice with a large periodicity is expected to modulate the Landau level structures in graphene, which could potentially be used to tune the topological states in graphene. The third material system is heterostructures of 2D magnets. The proposed research explores different material combinations to introduce strong spin orbit coupling and break inversion symmetry at the interface which could induce the Dzyaloshinskii–Moriya interaction and create skyrmions in the magnetic materials. This project employs several scanning probe microscopy techniques, including microwave impedance microscopy (MIM), electrostatic force microscopy (EFM), and magnetic force microscopy (MFM), to probe the local electronic and magnetic properties and image the topological states in real space. The local probes provide complementary information to conventional transport techniques, which can bring in new insights on topological physics in two dimensions from a different perspective. Results from this research will provide important feedback for theorists to refine model parameters and for material scientist to optimize and improve sample qualities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:拓扑学的数学概念,研究形状的全局几何特性,例如物体平滑变形时保持不变的孔或表面的数量,已应用于理解和发现新的电子和磁特性该项目研究了只有几个原子层厚的二维材料中的两种类型的现象,第一种是具有拓扑边缘传导的二维材料,在这些材料中,样品的内部是绝缘的。电流只能流动这种边缘传导可以大大减少电流流动过程中的能量损失,因此,它有可能用于开发下一代节能电子器件。第二类现象发生在局部的二维磁性材料中。磁极以漩涡形式缠绕,其拓扑特性使其能够抵抗外部扰动,从而能够更长时间地保留信息,因此缠绕方向可用于信息存储。学校学生进行多学科研究PI将开发适合各个级别学生的研究模块,例如构建涉及硬件设计和电子开发的演示纳米表征工具,为学生参与提供桥梁。拟议的研究活动将在教育计划中特别鼓励和招募。技术描述:原子层状材料为研究二维拓扑物理提供了丰富的平台。该项目研究了几种新型二维材料及其异质结构。来表征第一个材料系统是最近发现的拓扑磁体 MnBi2Te4,它将磁性和拓扑顺序结合在一种材料中,是少层样品中的陈绝缘体。表征对拓扑顺序很重要的几层样品的关键特性,包括拓扑间隙和磁各向异性。第二种材料系统是基于石墨烯的莫尔异质结构,包括排列的扭曲双层石墨烯。具有大周期性的莫尔超晶格的形成有望调节石墨烯中的朗道能级结构,这可能用于调整石墨烯中的拓扑状态。所提出的研究探索了不同的材料组合,以引入强自旋轨道耦合并打破界面处的反演对称性,从而引起Dzyaloshinskii-Moriya 相互作用并在磁性材料中产生斯格明子,该项目采用了多种扫描探针显微镜技术,包括微波阻抗显微镜 (MIM)、静电力显微镜 (EFM) 和磁力显微镜 (MFM),以探测局部电子和磁力显微镜。磁特性并对真实空间中的拓扑状态进行成像,局部探针为传统传输技术提供了补充信息,这可以从不同的维度带来对二维拓扑物理的新见解。这项研究的结果将为理论家改进模型参数以及材料科学家优化和提高样本质量提供重要反馈。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响进行评估,被认为值得支持。审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Van der Waals Interface Hosting Two Groups of Magnetic Skyrmions
容纳两组磁性斯格明子的范德华接口
  • DOI:
    10.1002/adma.202110583
  • 发表时间:
    2021-12-15
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Yingying Wu;Brian A. Francisco;Zhijie Chen;Wei Wang;Yu Zhang;C. Wan;Xiufeng Han;H. Chi;Yasen Hou;A. Lodesani;G. Yin;Kai Liu;Yong;Kang Wang;J. Moodera
  • 通讯作者:
    J. Moodera
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yongtao Cui其他文献

Fine mapping a major QTL qFCC7L for chlorophyll content in rice (Oryza sativa L.) cv. PA64s
精细定位水稻 (Oryza sativa L.) cv. 叶绿素含量的主要 QTL qFCC7L。
  • DOI:
    10.1007/s10725-016-0188-5
  • 发表时间:
    2016-06-04
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Weijun Ye;Shikai Hu;Liwen Wu;Chang;Yongtao Cui;Ping Chen;Jing Xu;Guojun Dong;Longbiao Guo;Q. Qian
  • 通讯作者:
    Q. Qian
Genetic Analysis and Fine Mapping of a New Rice Mutant, Leaf Tip Senescence 2
水稻新突变体叶尖衰老2的遗传分析与精细定位
  • DOI:
    10.3390/ijms25137082
  • 发表时间:
    2024-06-27
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Yongtao Cui;Jian Song;Liqun Tang;Xiaozheng Xu;Xinlu Peng;Honghuan Fan;Jianjun Wang
  • 通讯作者:
    Jianjun Wang
Genetic analysis and fine-mapping of a new rice mutant, white and lesion mimic leaf1
水稻新突变体白叶和病斑拟叶1的遗传分析和精细定位
  • DOI:
    10.1007/s10725-018-0403-7
  • 发表时间:
    2018-05-16
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Ping Chen;Haitao Hu;Yu Zhang;Zhong;Guojun Dong;Yongtao Cui;Q. Qian;Deyong Ren;Longbi
  • 通讯作者:
    Longbi
Chelant-enhanced solution for wafer-scale synthesis of few-layer WS2 films
用于晶圆级合成少层 WS2 薄膜的螯合剂增强解决方案
  • DOI:
    10.1557/s43577-023-00557-w
  • 发表时间:
    2023-07-31
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Miguel Isarraraz;Pedro A. Peña;M. Sayyad;Shize Yang;Han Li;Amir;Mina Rashetnia;Ruoxu Shang;William C. Coley;Yongtao Cui;Mustafa Kurban;S. Tongay;M. Ozkan;C. Ozkan
  • 通讯作者:
    C. Ozkan
Fine mapping a major QTL qFCC7L for chlorophyll content in rice (Oryza sativa L.) cv. PA64s
  • DOI:
    10.1007/s10725-016-0188-5
  • 发表时间:
    2024-09-13
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Weijun Ye;Shikai Hu;Liwen Wu;Chang;Yongtao Cui;Ping Chen;Jing Xu;Guojun Dong;Longbiao Guo;Q. Qian
  • 通讯作者:
    Q. Qian

Yongtao Cui的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yongtao Cui', 18)}}的其他基金

Collaborative Research: Correlated States in Twisted Hetero-bilayer Transition Metal Dichalcogenides
合作研究:扭曲异双层过渡金属二硫属化物中的相关态
  • 批准号:
    2104805
  • 财政年份:
    2021
  • 资助金额:
    $ 73.19万
  • 项目类别:
    Standard Grant
Investigation of topological electronic states in atomic layered materials and heterostructures
原子层状材料和异质结构中的拓扑电子态研究
  • 批准号:
    2004701
  • 财政年份:
    2020
  • 资助金额:
    $ 73.19万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于电子相关方法的机器学习力场模拟软件开发
  • 批准号:
    22273038
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于机器学习的二维非范德华自旋电子学材料的逆向设计
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于机器学习和常规电子健康数据的抗菌药物合理选择研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
有机光伏活性层分子及其聚集体的机器学习和电子结构理论研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于深度学习的电子能损和原子间作用势研究及若干应用
  • 批准号:
    12135002
  • 批准年份:
    2021
  • 资助金额:
    320 万元
  • 项目类别:
    重点项目

相似海外基金

Real-time Prediction of Adverse Outcomes After Surgery
实时预测手术后不良后果
  • 批准号:
    10724048
  • 财政年份:
    2023
  • 资助金额:
    $ 73.19万
  • 项目类别:
Neuroimaging approaches to improve prediction of smoking initiation and nicotine use escalation among young adult electronic nicotine delivery systems users
神经影像学方法可改善年轻成人电子尼古丁输送系统用户吸烟开始和尼古丁使用升级的预测
  • 批准号:
    10896832
  • 财政年份:
    2023
  • 资助金额:
    $ 73.19万
  • 项目类别:
Stress Response of Preterm Infants to NICU Caregiving
早产儿对 NICU 护理的应激反应
  • 批准号:
    10682923
  • 财政年份:
    2023
  • 资助金额:
    $ 73.19万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10931064
  • 财政年份:
    2023
  • 资助金额:
    $ 73.19万
  • 项目类别:
Leveraging Automated Optimization of Inspired Oxygen and Oxidized Biomarker Lipidomics for Targeted Oxygenation during Mechanical Ventilation: a Pragmatic Clinical Trial
利用吸入氧和氧化生物标志物脂质组学的自动优化在机械通气期间进行靶向氧合:一项实用的临床试验
  • 批准号:
    10592000
  • 财政年份:
    2023
  • 资助金额:
    $ 73.19万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了