Convergence Accelerator Phase I (RAISE): Prepare the US labor Force for Future Jobs in the Hotel and Restaurant Industry: A hybrid Framework and Multi-Stakeholder Approach

融合加速器第一阶段 (RAISE):为美国劳动力在酒店和餐饮业的未来就业做好准备:混合框架和多利益相关者方法

基本信息

项目摘要

The NSF Convergence Accelerator supports team-based, multidisciplinary efforts that address challenges of national importance and show potential for deliverables in the near future. The broader impact of this Convergence Accelerator Phase I project will support future research and knowledge growth on Artificial Intelligence (AI) and future jobs by developing transdisciplinary methods. This project will demonstrate how to integrate advances in data mining and analytics, qualitative analysis, survey research, and visualization techniques in predicting and visualizing the impact of AI on future jobs and proposing contextual reskill training strategies. This project will provide critically needed data on the evolutionary paths of jobs, trends of job tasks, required skills and tools, and workers' adaptation capabilities in the hotel and restaurant industry, which are significantly under-represented in the public labor databases. The research team will create an online, open-access repository of the forecasting model's outputs, description of future job content and required skills, and policy recommendations. All the findings and developed training modules will be integrated into a web-based Expert Recommendation System, which allows any user to access future job task descriptions, required skills, and customized reskill training modules. The models developed in this project can also be evaluated, scaled, and applied across different industries in the future. The proposed methodology and research findings will be used to enrich undergraduate and graduate courses in hospitality management.This Convergence Accelerator Phase I project contributes to the understanding of the intertwined relationships among AI, jobs, and workers from a spectrum of angles. This project will combine the most recent advances in deep learning, semi-structured interviews, surveys, and work-life journal data analysis in building a hybrid framework to predict the multi-dimensional impact of AI on future jobs in the HR industry. This project will also contribute to identifying various social-economic factors, family backgrounds, and personal experiences that may influence workers' adaptation capabilities. This project bridges the gap between our understanding of the workers' current conditions and customized reskilling strategies for meeting the needs of future jobs. This project will result in: (1) more complete documentation and analysis of the multi-faceted evolution of job contents influenced by AI in the HR industry (hospitality management), (2) a more complete understanding of the triangular relationships among technology, jobs, and labor force (sociology), (3) advances in heterogeneous data mining methods for human subject research (computer science and engineering), (4) an enhanced understanding of how to design effective reskilling programs in a complex system consisting of rapid technological advances, job task evolution, and individuals' backgrounds and experiences (human resources management).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF 融合加速器支持基于团队的多学科努力,以解决国家重大挑战并在不久的将来展示交付成果的潜力。 该融合加速器第一阶段项目的更广泛影响将通过开发跨学科方法来支持人工智能(AI)和未来就业的未来研究和知识增长。该项目将展示如何整合数据挖掘和分析、定性分析、调查研究和可视化技术的进步来预测和可视化人工智能对未来工作的影响,并提出情境再技能培训策略。该项目将提供酒店和餐饮业工作演变路径、工作任务趋势、所需技能和工具以及工人适应能力等急需的数据,而这些数据在公共劳动力数据库中的代表性严重不足。研究团队将创建一个在线、开放访问的预测模型输出存储库、未来工作内容和所需技能的描述以及政策建议。所有调查结果和开发的培训模块将集成到基于网络的专家推荐系统中,该系统允许任何用户访问未来的工作任务描述、所需技能和定制的重新技能培训模块。该项目开发的模型将来还可以在不同行业进行评估、扩展和应用。所提出的方法和研究成果将用于丰富酒店管理本科生和研究生课程。这个融合加速器第一阶段项目有助于从多个角度理解人工智能、工作和工人之间相互交织的关系。该项目将结合深度学习、半结构化访谈、调查和工作生活期刊数据分析方面的最新进展,构建一个混合框架,以预测人工智能对人力资源行业未来工作的多维影响。该项目还将有助于确定可能影响工人适应能力的各种社会经济因素、家庭背景和个人经历。该项目弥补了我们对工人当前状况的了解与满足未来工作需求的定制再培训策略之间的差距。该项目将带来:(1) 对人力资源行业(酒店管理)中受人工智能影响的工作内容的多方面演变进行更完整的记录和分析,(2) 对技术、工作之间的三角关系有更完整的理解和劳动力(社会学),(3)人类学科研究(计算机科学与工程)的异构数据挖掘方法的进步,(4)加深对如何在由快速技术进步组成的复杂系统中设计有效的再培训计划的理解、工作任务演变和个人背景和经验(人力资源管理)。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Employee Sharing Model for the Tourism and Hospitality Industry
旅游和酒店业的员工共享模式
  • DOI:
    10.3390/tourhosp2020011
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    De la Mora Velasco, Efrén;Huang, Arthur;Haney, Adam
  • 通讯作者:
    Haney, Adam
Examining Instructional Technologies in Hospitality and Tourism Education: A Systematic Review of Literature
检验酒店和旅游教育中的教学技术:文献的系统回顾
  • DOI:
    10.1080/10963758.2022.2109480
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Huang, Arthur;de la Mora Velasco, Efrén;Haney, Adam
  • 通讯作者:
    Haney, Adam
Customers’ Behavioural Immune System Responses to the COVID-19 Pandemic: A conceptual framework
客户行为免疫系统对 COVID-19 大流行的反应:概念框架
  • DOI:
    10.54055/ejtr.v30i.2264
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Huang, Arthur;Farboudi Jahromi, Melissa;Marquez, Julia
  • 通讯作者:
    Marquez, Julia
Resilience building in service firms during and post COVID-19
COVID-19 期间和之后服务公司的复原力建设
  • DOI:
    10.1080/02642069.2020.1862092
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huang, Arthur;Farboudi Jahromi, Melissa
  • 通讯作者:
    Farboudi Jahromi, Melissa
Exploring skill-based career transitions for entry-level hospitality and tourism workers
探索入门级酒店和旅游从业人员基于技能的职业转型
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yan Huang其他文献

Generalizable Person Re-Identification via Self-Supervised Batch Norm Test-Time Adaption
通过自我监督批量规范测试时间适应进行可推广的人员重新识别
  • DOI:
    10.48550/arxiv.2203.00672
  • 发表时间:
    2022-03-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Han;Chenyang Si;Yan Huang;Liangsheng Wang;T. Tan
  • 通讯作者:
    T. Tan
Research progress of metformin in the treatment of liver fibrosis.
二甲双胍治疗肝纤维化的研究进展
  • DOI:
    10.1016/j.intimp.2023.109738
  • 发表时间:
    2023-01-23
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Anqi Zhang;Fangyi Qian;Yangyang Li;Bowen Li;Furong Yang;Chengmu Hu;Wuyi Sun;Yan Huang
  • 通讯作者:
    Yan Huang
Effects of intrinsic defects on the electronic structure and magnetic properties of CoFe 2 O 4 : A first-principles study
本征缺陷对CoFe 2 O 4 电子结构和磁性能的影响:第一性原理研究
Edge convolutional networks: Decomposing graph convolutional networks for stochastic training with independent edges
边缘卷积网络:分解图卷积网络以进行具有独立边缘的随机训练
  • DOI:
    10.1016/j.neucom.2023.126430
  • 发表时间:
    2023-09-01
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Yi Luo;Yan Huang;Guangchun Luo;Ke Qin;Aiguo Chen
  • 通讯作者:
    Aiguo Chen
On the nature of platinum oxides on carbon-supported catalysts
碳载催化剂上铂氧化物的性质
  • DOI:
    10.1016/j.jelechem.2014.06.040
  • 发表时间:
    2014-08-15
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Yan Huang;F. Wagner;Junliang Zhang;J. Jorné
  • 通讯作者:
    J. Jorné

Yan Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yan Huang', 18)}}的其他基金

Collaborative Research: SaTC: EDU: Fire and ICE: Raising Security Awareness through Experiential Learning Activities for Building Trustworthy Deep Learning-based Applications
协作研究:SaTC:EDU:火灾和 ICE:通过体验式学习活动提高安全意识,构建值得信赖的基于深度学习的应用程序
  • 批准号:
    2244221
  • 财政年份:
    2023
  • 资助金额:
    $ 97.76万
  • 项目类别:
    Standard Grant
Collaborative Research: IUSE: EDU: Innovative and Inclusive Undergraduate XR Engineering Education to Cultivate Future Metaverse Workforce
合作研究:IUSE:EDU:创新和包容的本科 XR 工程教育,培养未来的元宇宙劳动力
  • 批准号:
    2315595
  • 财政年份:
    2023
  • 资助金额:
    $ 97.76万
  • 项目类别:
    Standard Grant
High resolution, multi-material deposition of tissue engineering scaffolds
组织工程支架的高分辨率、多材料沉积
  • 批准号:
    EP/M018989/1
  • 财政年份:
    2015
  • 资助金额:
    $ 97.76万
  • 项目类别:
    Research Grant
CRII: SaTC: Efficient Secure Multiparty Computation of Large-Scale, Complex Protocols
CRII:SaTC:大规模、复杂协议的高效安全多方计算
  • 批准号:
    1464113
  • 财政年份:
    2015
  • 资助金额:
    $ 97.76万
  • 项目类别:
    Standard Grant
U.S.-Based Student Support to Attend ACM SIGSPATIAL 2014
支持美国学生参加 2014 年 ACM SIGSPATIAL
  • 批准号:
    1449024
  • 财政年份:
    2014
  • 资助金额:
    $ 97.76万
  • 项目类别:
    Standard Grant
Continuous Twin Screw Rheo-Extrustion of Light Alloys
轻合金连续双螺杆流变挤出
  • 批准号:
    EP/J500793/1
  • 财政年份:
    2011
  • 资助金额:
    $ 97.76万
  • 项目类别:
    Research Grant
III: Small: AegisDB: Integrated Real-Time Geo-Stream Processing and Monitoring System: A Data-Type-Based Approach
III:小型:AegisDB:集成实时地理流处理和监测系统:基于数据类型的方法
  • 批准号:
    1017926
  • 财政年份:
    2010
  • 资助金额:
    $ 97.76万
  • 项目类别:
    Standard Grant
SGER: Detecting and Maintaining Evolving Regions from Spatially and Temporally Varying Observations for Monitoring and Alerting
SGER:从空间和时间变化的观测中检测和维护不断变化的区域以进​​行监控和警报
  • 批准号:
    0844342
  • 财政年份:
    2008
  • 资助金额:
    $ 97.76万
  • 项目类别:
    Standard Grant
CRI: IAD Infrastructure for Environmental Monitoring and Modeling using Large-Scale Sensor Networks
CRI:使用大规模传感器网络进行环境监测和建模的 IAD 基础设施
  • 批准号:
    0709285
  • 财政年份:
    2007
  • 资助金额:
    $ 97.76万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向计算密集型应用的新型计算范式及其加速器关键技术
  • 批准号:
    62374108
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于加速器光源的谱学和成像技术研究范德瓦尔斯材料中的极化激元
  • 批准号:
    12375331
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于3MV串列加速器的带电粒子与原子分子碰撞电离过程研究
  • 批准号:
    12374234
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
多态边缘视频分析加速器的软硬件协同设计与实现
  • 批准号:
    62302348
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
服务器无感知计算的加速器高效共享研究
  • 批准号:
    62302302
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NSF Convergence Accelerator Track J Phase 2: AquaSteady - Balancing Soil Moisture, A Seaweed-Based Hydrogel for Sustainable Agriculture
NSF 融合加速器轨道 J 第 2 阶段:AquaSteady - 平衡土壤湿度,一种用于可持续农业的海藻水凝胶
  • 批准号:
    2345052
  • 财政年份:
    2023
  • 资助金额:
    $ 97.76万
  • 项目类别:
    Cooperative Agreement
NSF Convergence Accelerator Track H: Phase II Smart Wearables for Expanding Workplace Access for People with Blindness and Low Vision
NSF 融合加速器轨道 H:第二阶段智能可穿戴设备,扩大失明和低视力人士的工作场所使用范围
  • 批准号:
    2345139
  • 财政年份:
    2023
  • 资助金额:
    $ 97.76万
  • 项目类别:
    Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: Cultivate IQ - Empowering Regional Food Systems
NSF 融合加速器轨道 J 第 2 阶段:培养智商 - 增强区域粮食系统能力
  • 批准号:
    2345176
  • 财政年份:
    2023
  • 资助金额:
    $ 97.76万
  • 项目类别:
    Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: CropSmart - a digital twin for making wiser cropping decisions nationwide
NSF 融合加速器轨道 J 第 2 阶段:CropSmart - 用于在全国范围内做出更明智的种植决策的数字孪生
  • 批准号:
    2345039
  • 财政年份:
    2023
  • 资助金额:
    $ 97.76万
  • 项目类别:
    Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: Dairy NutriSols - Catalyzing technology adoption to promote food and nutrition security
NSF 融合加速器轨道 J 第 2 阶段:乳制品 NutriSols - 促进技术采用,促进食品和营养安全
  • 批准号:
    2345069
  • 财政年份:
    2023
  • 资助金额:
    $ 97.76万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了