Collaborative Research: SHF: Medium: Data-Efficient Uncovering of Rare Design Failures for Reliability-Critical Circuits

合作研究:SHF:中:以数据效率揭示可靠性关键电路的罕见设计故障

基本信息

  • 批准号:
    2215573
  • 负责人:
  • 金额:
    $ 56.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

While the proliferation of electronics has been driven by computing and consumer applications for a long time, integrated circuits (ICs) presently undergo accelerated integration into healthcare, transportation, robotics, and autonomous systems. In addition to provision of prescribed functionalities of sensing, computing, and processing, these ICs must meet stringent reliability specifications in order to safeguard performance and safety of the whole mission-critical system where deployed. Circuits designed to be fail-safe by design exhibit low occurrences of failure. However, having a sign of no failure under typical verification and test procedures yields no guarantee for meeting a given near-zero or extremely-low failure specification. On the other hand, exhaustiveness may never be achieved by brute-force failure detection, which results in an unacceptably high cost in simulation and testing. This project will develop efficient machine-learning techniques for extremely-rare circuit-failure detection without needing large amounts of expensive simulation or test data. The proposed techniques will enable cost-effective verification and test of reliability-critical ICs and mission-critical systems in general. The research undertaken will also enable the two groups at UC Santa Barbara and UT Dallas to educate and train undergraduate and graduate students, including women and underrepresented groups, thus expanding the and contributing to the much needed US technological workforce. It is believed that extracting critical failure information via machine learning within practical limits of available measurement or simulation data can go a long way towards extremely rare failure detection. This project centers on developing an active-learning framework that intelligently samples in the high-dimensional space of complex interacting design parameters, manufacturing variations, and operating conditions, achieving the goal of data-efficient detection of rare circuit failures. The targeted active-learning framework will be supported by the development of machine-learning model foundations and robust learning methods that can scale to high-dimensional parameter spaces. The key objective of this project is to make extremely-rare failure discovery and identification of the underlying failure mechanisms practically viable by extracting the maximum amount of useful information possible from a small amount of available data. The proposed extremely-rare failure discovery work will be broadly applicable to verification and failure analysis of analog, mixed-signal, radio-frequency, and memory circuits with stringent failure specifications and many other types of mission-critical systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
虽然很长一段时间以来,电子设备的扩散是由计算和消费者应用驱动的,但目前正在加速进入医疗保健,运输,机器人技术和自治系统的综合电路(ICS)。除了提供传感,计算和处理的规定功能外,这些IC还必须符合严格的可靠性规范,以维护部署的整个关键任务系统的绩效和安全性。设计为故障安全的电路表现出较低的故障出现。但是,在典型验证和测试程序中没有故障的迹象不能保证满足给定的接近零或极低的失败规范。另一方面,蛮力失败的检测永远无法实现,这导致模拟和测试的成本高昂。该项目将开发有效的机器学习技术,用于极度稀有的电路检测,而无需大量昂贵的模拟或测试数据。所提出的技术将启用具有成本效益的验证,并总体上对关键性IC和关键任务系统的测试。 进行的研究还将使圣塔芭芭拉分校和乌特·达拉斯分校的两个小组能够教育和培训本科生和研究生,包括妇女和代表性不足的群体,从而扩大并为美国急需的美国技术劳动力做出了贡献。据信,在可用测量的实际限制内通过机器学习提取关键的故障信息或模拟数据可能对极罕见的失败检测有很大帮助。该项目集中在开发一个主动学习框架上,该框架在复杂的相互作用设计参数,制造变化和操作条件的高维空间中智能采样,实现了对稀有电路故障的数据有效检测的目标。有针对性的主动学习框架将由机器学习模型基础的开发和可靠的学习方法来支持,这些方法可以扩展到高维参数空间。该项目的关键目的是通过从少量可用数据中提取最大可能的有用信息,对基本故障机制进行极度稀有的故障发现和识别。拟议的极其稀有的失败发现工作将广泛适用于对模拟,混合信号,射频和记忆循环的验证和失败分析,具有严格的失败规格以及许多其他类型的关键任务 - 任务 - 关键系统。这奖反映了NSF的法定任务,并认为通过基金会的知识优点和广泛的crietia进行评估,可以通过评估来进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaoning Qian其他文献

Functional module identification by block modeling using simulated annealing with path relinking
使用带有路径重新链接的模拟退火通过块建模来识别功能模块
Dense Surface Reconstruction With Shadows in MIS
MIS 中带阴影的密集表面重建
A Space Group Symmetry Informed Network for O(3) Equivariant Crystal Tensor Prediction
用于 O(3) 等变晶体张量预测的空间群对称信息网络
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Keqiang Yan;Alexandra Saxton;Xiaofeng Qian;Xiaoning Qian;Shuiwang Ji
  • 通讯作者:
    Shuiwang Ji
Optimal hybrid sequencing and assembly: Feasibility conditions for accurate genome reconstruction and cost minimization strategy
最佳杂交测序和组装:精确基因组重建和成本最小化策略的可行性条件
  • DOI:
    10.1016/j.compbiolchem.2017.03.016
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Chun;Noushin Ghaffari;Xiaoning Qian;Byung
  • 通讯作者:
    Byung
Thin plate spline feature point matching for organ surfaces in minimally invasive surgery imaging
微创手术成像中器官表面薄板样条特征点匹配
  • DOI:
    10.1117/12.2007687
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bingxiong Lin;Yu Sun;Xiaoning Qian
  • 通讯作者:
    Xiaoning Qian

Xiaoning Qian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaoning Qian', 18)}}的其他基金

Collaborative Research: III: Medium: Conditional Transport: Theory, Methods, Computation, and Applications
合作研究:III:媒介:条件传输:理论、方法、计算和应用
  • 批准号:
    2212419
  • 财政年份:
    2022
  • 资助金额:
    $ 56.7万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Data-Efficient Uncovering of Rare Design Failures for Reliability-Critical Circuits
合作研究:SHF:中:以数据效率揭示可靠性关键电路的罕见设计故障
  • 批准号:
    1956219
  • 财政年份:
    2020
  • 资助金额:
    $ 56.7万
  • 项目类别:
    Continuing Grant
III: Small: Collaborative Research: Combinatorial Collaborative Clustering for Simultaneous Patient Stratification and Biomarker Identification
III:小型:协作研究:用于同时进行患者分层和生物标志物识别的组合协作聚类
  • 批准号:
    1812641
  • 财政年份:
    2018
  • 资助金额:
    $ 56.7万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: Personalized Environmental Monitoring of Type 1 Diabetes (T1D): A Dynamic System Perspective
AF:小型:合作研究:1 型糖尿病 (T1D) 的个性化环境监测:动态系统视角
  • 批准号:
    1718513
  • 财政年份:
    2017
  • 资助金额:
    $ 56.7万
  • 项目类别:
    Standard Grant
CAREER: Knowledge-driven Analytics, Model Uncertainty, and Experiment Design
职业:知识驱动的分析、模型不确定性和实验设计
  • 批准号:
    1553281
  • 财政年份:
    2016
  • 资助金额:
    $ 56.7万
  • 项目类别:
    Continuing Grant
EAGER: Collaborative Research: Tracking of KOR1 Protein Transport in Arabidopsis using Fluorescent-Timer Imaging System
EAGER:合作研究:使用荧光定时器成像系统追踪拟南芥中的 KOR1 蛋白转运
  • 批准号:
    1547557
  • 财政年份:
    2015
  • 资助金额:
    $ 56.7万
  • 项目类别:
    Continuing Grant
International Workshop on Computational Network Biology: Modeling, Analysis, and Control (CNB-MAC 2015)
计算网络生物学国际研讨会:建模、分析和控制 (CNB-MAC 2015)
  • 批准号:
    1546793
  • 财政年份:
    2015
  • 资助金额:
    $ 56.7万
  • 项目类别:
    Standard Grant
EAGER: Identifying Blockmodel Functional Modules across Multiple Networks
EAGER:识别跨多个网络的 Blockmodel 功能模块
  • 批准号:
    1447235
  • 财政年份:
    2014
  • 资助金额:
    $ 56.7万
  • 项目类别:
    Standard Grant

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 56.7万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 56.7万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 56.7万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 56.7万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 56.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了