AF: Small: Collaborative Research: Personalized Environmental Monitoring of Type 1 Diabetes (T1D): A Dynamic System Perspective
AF:小型:合作研究:1 型糖尿病 (T1D) 的个性化环境监测:动态系统视角
基本信息
- 批准号:1718513
- 负责人:
- 金额:$ 18.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2021-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The progression of many chronic diseases, such as Type 1 diabetes (T1D), manifests dynamic processes that can be modified by environmental exposures. Modeling of the underlying disease progression holds critical values for better understanding of disease development, effective monitoring, and prevention. While the emerging big data studying these diseases provide great resources, current pace for translating these data into effective monitoring and intervention strategies has been slow due to the analytic challenges caused by potential multi-layer characteristics of disease progression processes, the high-dimensional exogenous factors, heterogeneous biomarker signals, and the complexity of continuous-time stochastic processes. To mitigate these challenges with the development of new models and computational algorithms, this research will provide the desired personalized monitoring and risk factor identification capability, which is crucial not only for increasing the situational awareness of the individuals who are at risk, but also for providing evidences for design, validation, and deployment of intervention strategies. Its generic nature will also help effective monitoring of many other dynamic systems in engineering and life sciences. The interdisciplinary nature of this research across data-driven risk monitoring, dynamic systems, high-dimensional variable selection, and healthcare, will prepare students with a diversified education background. The objective of this project is to create a generic suite of computational approaches that can be applied for modeling, learning, and monitoring a set of dynamic diseases, whose progression processes may be modified by exogenous factors such as environmental exposures. Several methodological contributions are expected, including: (1) a novel rule-based monitoring methodology to convert high-dimensional complex biomarkers into disease risk evaluation, via the development of an efficient screening method for high-throughput rule discovery and an optimal design method for risk monitoring; (2) a multi-layer dynamic model that can investigate how the exogenous risk factors regulate the disease process, with integration of sparse multi-task learning to mitigate the high-dimensionality of exogenous factors; and (3) a high-dimensional robust risk factor identification framework that can identify exogenous factors with integration of knowledge learned from historical data, new measurements, and clinician's prognostics. These proposed methods will be evaluated with a practical example studying T1D in partnership with The Environmental Determinant of Diabetes in the Young (TEDDY) study.
许多慢性疾病(例如1型糖尿病(T1D))的进展表现出可以通过环境暴露来改变的动态过程。基础疾病进程的建模具有关键价值,以更好地理解疾病发展,有效的监测和预防。尽管新兴的大数据研究这些疾病提供了丰富的资源,但由于疾病进展过程的潜在多层特征,高维外源性因素,异质生物标志物信号,异质生物标记信号以及持续时间的持续时间的复杂性,将这些数据转化为有效的监测和干预策略的最新速度一直很慢。为了通过开发新模型和计算算法来缓解这些挑战,这项研究将提供所需的个性化监控和风险因素识别能力,这不仅对于提高处于风险的个人的情境认识至关重要,而且对于为设计,验证和设计策略的部署提供了证据。它的通用性质还将有助于对工程和生命科学中许多其他动态系统有效监测。这项研究的跨学科性质跨数据驱动的风险监测,动态系统,高维变量选择和医疗保健,将为学生提供多种教育背景的准备。该项目的目的是创建一套通用的计算方法套件,可用于建模,学习和监测一组动态疾病,其进展过程可以通过外源性因素(例如环境暴露)来修改。预计有几种方法上的贡献,包括:(1)通过开发有效的高通量规则发现的有效筛选方法,将高维复杂生物标志物转换为疾病风险评估的新型监测方法,以及用于风险监测的最佳设计方法; (2)一个多层动态模型,可以通过稀疏多任务学习的整合来调查外源危险因素如何调节疾病过程,从而减轻外源性因素的高维度; (3)一个高维的鲁棒风险因素识别框架,可以通过从历史数据,新测量和临床医生的预后中学到的知识来识别外源性因素。这些提出的方法将通过与年轻(泰迪)研究中糖尿病的环境决定因素合作研究T1D的实际例子进行评估。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Introducing the Endotype Concept to Address the Challenge of Disease Heterogeneity in Type 1 Diabetes
- DOI:10.2337/dc19-0880
- 发表时间:2020-01-01
- 期刊:
- 影响因子:16.2
- 作者:Battaglia, Manuela;Ahmed, Simi;Peakman, Mark
- 通讯作者:Peakman, Mark
GPSRL: Learning Semi-Parametric Bayesian Survival Rule Lists from Heterogeneous Patient Data
GPSRL:从异构患者数据中学习半参数贝叶斯生存规则列表
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Shakur, Ameer Hamza;Qian, Xiaoning;Wang, Zhangyang;Mortazavi, Bobak;Huang, Shuai
- 通讯作者:Huang, Shuai
Switching-State Dynamical Modeling of Daily Behavioral Data
日常行为数据的切换状态动态建模
- DOI:10.1007/s41666-018-0017-x
- 发表时间:2018
- 期刊:
- 影响因子:5.9
- 作者:Ardywibowo, Randy;Huang, Shuai;Gui, Shupeng;Xiao, Cao;Cheng, Yu;Liu, Ji;Qian, Xiaoning
- 通讯作者:Qian, Xiaoning
Early detection and risk assessment for chronic disease with irregular longitudinal data analysis
- DOI:10.1016/j.jbi.2019.103231
- 发表时间:2019-08-01
- 期刊:
- 影响因子:4.5
- 作者:He, Kai;Huang, Shuai;Qian, Xiaoning
- 通讯作者:Qian, Xiaoning
Longitudinal planning for personalized health management using daily behavioral data
- DOI:10.1080/24725579.2019.1640814
- 发表时间:2019-07
- 期刊:
- 影响因子:0
- 作者:Cao Xiao;Shupeng Gui;Ji Liu;Yu Cheng;Xiaoning Qian;Shuai Huang
- 通讯作者:Cao Xiao;Shupeng Gui;Ji Liu;Yu Cheng;Xiaoning Qian;Shuai Huang
共 10 条
- 1
- 2
Xiaoning Qian其他文献
Functional module identification by block modeling using simulated annealing with path relinking
使用带有路径重新链接的模拟退火通过块建模来识别功能模块
- DOI:
- 发表时间:20122012
- 期刊:
- 影响因子:0
- 作者:Yijie Wang;Xiaoning QianYijie Wang;Xiaoning Qian
- 通讯作者:Xiaoning QianXiaoning Qian
Dense Surface Reconstruction With Shadows in MIS
MIS 中带阴影的密集表面重建
- DOI:10.1109/tbme.2013.225776810.1109/tbme.2013.2257768
- 发表时间:20132013
- 期刊:
- 影响因子:4.6
- 作者:Bingxiong Lin;Yu Sun;Xiaoning QianBingxiong Lin;Yu Sun;Xiaoning Qian
- 通讯作者:Xiaoning QianXiaoning Qian
A Space Group Symmetry Informed Network for O(3) Equivariant Crystal Tensor Prediction
用于 O(3) 等变晶体张量预测的空间群对称信息网络
- DOI:
- 发表时间:20242024
- 期刊:
- 影响因子:0
- 作者:Keqiang Yan;Alexandra Saxton;Xiaofeng Qian;Xiaoning Qian;Shuiwang JiKeqiang Yan;Alexandra Saxton;Xiaofeng Qian;Xiaoning Qian;Shuiwang Ji
- 通讯作者:Shuiwang JiShuiwang Ji
Optimal hybrid sequencing and assembly: Feasibility conditions for accurate genome reconstruction and cost minimization strategy
最佳杂交测序和组装:精确基因组重建和成本最小化策略的可行性条件
- DOI:10.1016/j.compbiolchem.2017.03.01610.1016/j.compbiolchem.2017.03.016
- 发表时间:20172017
- 期刊:
- 影响因子:3.1
- 作者:Chun;Noushin Ghaffari;Xiaoning Qian;ByungChun;Noushin Ghaffari;Xiaoning Qian;Byung
- 通讯作者:ByungByung
Adapting indexing trees to data distribution in feature spaces
使索引树适应特征空间中的数据分布
- DOI:
- 发表时间:20102010
- 期刊:
- 影响因子:4.5
- 作者:Xiaoning Qian;H. TagareXiaoning Qian;H. Tagare
- 通讯作者:H. TagareH. Tagare
共 40 条
- 1
- 2
- 3
- 4
- 5
- 6
- 8
Xiaoning Qian的其他基金
Collaborative Research: III: Medium: Conditional Transport: Theory, Methods, Computation, and Applications
合作研究:III:媒介:条件传输:理论、方法、计算和应用
- 批准号:22124192212419
- 财政年份:2022
- 资助金额:$ 18.37万$ 18.37万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: SHF: Medium: Data-Efficient Uncovering of Rare Design Failures for Reliability-Critical Circuits
合作研究:SHF:中:以数据效率揭示可靠性关键电路的罕见设计故障
- 批准号:22155732215573
- 财政年份:2021
- 资助金额:$ 18.37万$ 18.37万
- 项目类别:Continuing GrantContinuing Grant
Collaborative Research: SHF: Medium: Data-Efficient Uncovering of Rare Design Failures for Reliability-Critical Circuits
合作研究:SHF:中:以数据效率揭示可靠性关键电路的罕见设计故障
- 批准号:19562191956219
- 财政年份:2020
- 资助金额:$ 18.37万$ 18.37万
- 项目类别:Continuing GrantContinuing Grant
III: Small: Collaborative Research: Combinatorial Collaborative Clustering for Simultaneous Patient Stratification and Biomarker Identification
III:小型:协作研究:用于同时进行患者分层和生物标志物识别的组合协作聚类
- 批准号:18126411812641
- 财政年份:2018
- 资助金额:$ 18.37万$ 18.37万
- 项目类别:Standard GrantStandard Grant
CAREER: Knowledge-driven Analytics, Model Uncertainty, and Experiment Design
职业:知识驱动的分析、模型不确定性和实验设计
- 批准号:15532811553281
- 财政年份:2016
- 资助金额:$ 18.37万$ 18.37万
- 项目类别:Continuing GrantContinuing Grant
EAGER: Collaborative Research: Tracking of KOR1 Protein Transport in Arabidopsis using Fluorescent-Timer Imaging System
EAGER:合作研究:使用荧光定时器成像系统追踪拟南芥中的 KOR1 蛋白转运
- 批准号:15475571547557
- 财政年份:2015
- 资助金额:$ 18.37万$ 18.37万
- 项目类别:Continuing GrantContinuing Grant
International Workshop on Computational Network Biology: Modeling, Analysis, and Control (CNB-MAC 2015)
计算网络生物学国际研讨会:建模、分析和控制 (CNB-MAC 2015)
- 批准号:15467931546793
- 财政年份:2015
- 资助金额:$ 18.37万$ 18.37万
- 项目类别:Standard GrantStandard Grant
EAGER: Identifying Blockmodel Functional Modules across Multiple Networks
EAGER:识别跨多个网络的 Blockmodel 功能模块
- 批准号:14472351447235
- 财政年份:2014
- 资助金额:$ 18.37万$ 18.37万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
基于超宽频技术的小微型无人系统集群协作关键技术研究与应用
- 批准号:
- 批准年份:2020
- 资助金额:57 万元
- 项目类别:面上项目
异构云小蜂窝网络中基于协作预编码的干扰协调技术研究
- 批准号:61661005
- 批准年份:2016
- 资助金额:30.0 万元
- 项目类别:地区科学基金项目
密集小基站系统中的新型接入理论与技术研究
- 批准号:61301143
- 批准年份:2013
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
ScFVCD3-9R负载Bcl-6靶向小干扰RNA治疗EAMG的试验研究
- 批准号:81072465
- 批准年份:2010
- 资助金额:31.0 万元
- 项目类别:面上项目
基于小世界网络的传感器网络研究
- 批准号:60472059
- 批准年份:2004
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:23422442342244
- 财政年份:2024
- 资助金额:$ 18.37万$ 18.37万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
- 批准号:23354112335411
- 财政年份:2024
- 资助金额:$ 18.37万$ 18.37万
- 项目类别:Standard GrantStandard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:24209422420942
- 财政年份:2024
- 资助金额:$ 18.37万$ 18.37万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:23473222347322
- 财政年份:2024
- 资助金额:$ 18.37万$ 18.37万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
- 批准号:23314012331401
- 财政年份:2024
- 资助金额:$ 18.37万$ 18.37万
- 项目类别:Standard GrantStandard Grant