喵ID:YXP39a免责声明

Early detection and risk assessment for chronic disease with irregular longitudinal data analysis

基本信息

DOI:
10.1016/j.jbi.2019.103231
发表时间:
2019-08-01
影响因子:
4.5
通讯作者:
Qian, Xiaoning
中科院分区:
医学3区
文献类型:
Article
作者: He, Kai;Huang, Shuai;Qian, Xiaoning研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Early detection and risk assessment of complex chronic disease based on longitudinal clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. Disease diagnosis with computer-aided methods has been extensively studied. However, early detection and contemporaneous risk assessment based on partially labeled irregular longitudinal measurements is relatively unexplored. In this paper, we propose a flexible mixed-kernel framework for training a contemporaneous disease risk detector to predict the onset of disease and monitor the disease progression. Moreover, we address the label insufficiency problem by identifying the pattern of disease-induced progression over time with longitudinal data. Our method is based on a Structured Output Support Vector Machine (SOSVM), extended to longitudinal data analysis. Extensive experiments are conducted on several datasets of varying complexity, including the contemporaneous risk assessment with simulated irregular longitudinal data; the identification of the onset of Type 1 Diabetes (T1D) with irregularly sampled longitudinal RNA-Seq gene expression dataset; as well as the monitoring of the drug long-term effects on patients using longitudinal RNA-Seq dataset containing missing time points, demonstrating that our method enhances the accuracy in both early diagnosis and risk estimation with partially labeled irregular longitudinal clinical data.
基于纵向临床数据对复杂慢性疾病进行早期检测和风险评估有助于医生做出早期诊断并监测疾病进展。利用计算机辅助方法进行疾病诊断已被广泛研究。然而,基于部分标记的不规则纵向测量数据进行早期检测和同期风险评估的研究相对较少。在本文中,我们提出了一种灵活的混合核框架,用于训练一个同期疾病风险检测器,以预测疾病的发作并监测疾病进展。此外,我们通过利用纵向数据识别随时间推移由疾病引起的进展模式来解决标记不足的问题。我们的方法基于结构输出支持向量机(SOSVM),并扩展到纵向数据分析。我们在几个复杂程度不同的数据集上进行了大量实验,包括利用模拟的不规则纵向数据进行同期风险评估;利用不规则采样的纵向RNA - Seq基因表达数据集识别1型糖尿病(T1D)的发病;以及利用包含缺失时间点的纵向RNA - Seq数据集监测药物对患者的长期影响,结果表明我们的方法提高了利用部分标记的不规则纵向临床数据进行早期诊断和风险估计的准确性。
参考文献(69)
被引文献(0)

数据更新时间:{{ references.updateTime }}

关联基金

AF: Small: Collaborative Research: Personalized Environmental Monitoring of Type 1 Diabetes (T1D): A Dynamic System Perspective
批准号:
1718513
批准年份:
2017
资助金额:
18.37
项目类别:
Standard Grant
Qian, Xiaoning
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓