EAGER: Identifying Blockmodel Functional Modules across Multiple Networks
EAGER:识别跨多个网络的 Blockmodel 功能模块
基本信息
- 批准号:1447235
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-15 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Broader Significance and Importance: Due to the high complexity of analyzing high-throughput omics data, most of the existing computational methods separately analyze the data collected from different sources. Furthermore, they typically assume that the available prior biology knowledge, such as molecular interactions manifested as biological networks, is accurate. As the existing curated molecular interactions and functionalities across public databases still have unsatisfactory coverage or consistency, it is critical to develop effective analysis methods that can achieve biologically meaningful solutions by integrating diverse evidence from multiple biological networks. The objective of the proposed research is to develop a network-based mathematical framework and a set of new computational algorithms for the integrative analysis of multiple networks. The proposed research has strong transformative potentials in network biology. If successful, it can eventually lead to computational tools for more accurate and reliable identification of novel biomarkers and functional pathways. Beyond that, through the ongoing collaborations with biologists and physicians, it will open up new applications of network analysis methods to improve our understanding of complex human diseases. The interdisciplinary nature of this proposal promises to foster cross-fertilization of ideas between engineering and biology through research and education.Technical Description: The proposed research investigates integrative analysis of multiple biological networks, which are often noisy, to robustly identify biologically significant functional modules. The proposed mathematical framework provides a platform to address both critical issues in multiple network analysis regarding the computational complexity and biological significance by simultaneously analyzing multiple networks in a modular space. The advantage of integrative analysis of multiple biological networks is two-fold: First, cellular functional pathways that carry out critical functionalities are likely to be conserved across different organisms. Multiple network analysis will improve the performance of functional module identification. Second, new evidence from the analysis of identified modules may effectively transfer previously accrued knowledge to more confident curation and annotation of molecular relationships and the underlying cellular mechanisms. The proposed research and education activities are to: 1) design a new mathematical model for multiple biological network analysis to identify network modules for better understanding functional organization of cells and the complex cellular mechanisms; 2) devise effective and efficient optimization algorithms, including mathematical programming and stochastic optimization algorithms, to solve the optimization problems at different levels of complexity; 3) evaluate the performance of the proposed methods by constructing biologically realistic benchmark datasets; 4) apply the methods to systems biology research through collaboration with biomedical researchers; and 5) integrate research findings into the education and training of students with various academic backgrounds in the interdisciplinary field of computational network biology.
更广泛的意义和重要性:由于分析高通量OMICS数据的高复杂性,大多数现有的计算方法分别分别分析了从不同来源收集的数据。此外,他们通常假定可用的先前生物学知识(例如以生物网络的分子相互作用)是准确的。由于公共数据库中现有的策划分子相互作用和功能仍然没有令人满意的覆盖范围或一致性,因此开发有效的分析方法可以通过整合来自多个生物网络的各种证据来实现生物学上有意义的解决方案。拟议的研究的目的是开发基于网络的数学框架和一组新的计算算法,以进行多个网络的集成分析。拟议的研究在网络生物学方面具有强大的变革潜力。如果成功,它最终可能会导致计算工具,以更准确,可靠地识别新型生物标志物和功能途径。除此之外,通过与生物学家和医师进行的持续合作,它将开辟网络分析方法的新应用,以提高我们对复杂人类疾病的理解。该提案的跨学科性质有望通过研究和教育来促进工程和生物学之间的思想的交叉侵入。技术描述:拟议的研究调查了多个生物网络的综合分析,这些分析通常是嘈杂的,可以强有力地识别生物学上重要的功能模块。提出的数学框架提供了一个平台,可以通过同时分析模块化空间中的多个网络来解决有关计算复杂性和生物学意义的多个关键问题。对多个生物网络的综合分析的优势是两倍:首先,在不同生物体中,进行关键功能的细胞功能途径很可能是保守的。多个网络分析将改善功能模块识别的性能。其次,来自对已确定模块的分析的新证据可以有效地将先前应计的知识转移到更自信的策划和分子关系的注释和基本细胞机制。拟议的研究和教育活动是:1)设计一种新的数学模型,用于多种生物网络分析,以确定网络模块,以更好地了解细胞的功能组织和复杂的细胞机制; 2)设计有效,有效的优化算法,包括数学编程和随机优化算法,以解决不同复杂性水平的优化问题; 3)通过构建生物学上现实的基准数据集来评估所提出的方法的性能; 4)通过与生物医学研究人员的合作将方法应用于系统生物学研究; 5)将研究结果纳入计算网络生物学跨学科领域的各种学术背景的学生的教育和培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaoning Qian其他文献
Functional module identification by block modeling using simulated annealing with path relinking
使用带有路径重新链接的模拟退火通过块建模来识别功能模块
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Yijie Wang;Xiaoning Qian - 通讯作者:
Xiaoning Qian
Dense Surface Reconstruction With Shadows in MIS
MIS 中带阴影的密集表面重建
- DOI:
10.1109/tbme.2013.2257768 - 发表时间:
2013 - 期刊:
- 影响因子:4.6
- 作者:
Bingxiong Lin;Yu Sun;Xiaoning Qian - 通讯作者:
Xiaoning Qian
A Space Group Symmetry Informed Network for O(3) Equivariant Crystal Tensor Prediction
用于 O(3) 等变晶体张量预测的空间群对称信息网络
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Keqiang Yan;Alexandra Saxton;Xiaofeng Qian;Xiaoning Qian;Shuiwang Ji - 通讯作者:
Shuiwang Ji
Optimal hybrid sequencing and assembly: Feasibility conditions for accurate genome reconstruction and cost minimization strategy
最佳杂交测序和组装:精确基因组重建和成本最小化策略的可行性条件
- DOI:
10.1016/j.compbiolchem.2017.03.016 - 发表时间:
2017 - 期刊:
- 影响因子:3.1
- 作者:
Chun;Noushin Ghaffari;Xiaoning Qian;Byung - 通讯作者:
Byung
Adapting indexing trees to data distribution in feature spaces
使索引树适应特征空间中的数据分布
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:4.5
- 作者:
Xiaoning Qian;H. Tagare - 通讯作者:
H. Tagare
Xiaoning Qian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaoning Qian', 18)}}的其他基金
Collaborative Research: III: Medium: Conditional Transport: Theory, Methods, Computation, and Applications
合作研究:III:媒介:条件传输:理论、方法、计算和应用
- 批准号:
2212419 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Data-Efficient Uncovering of Rare Design Failures for Reliability-Critical Circuits
合作研究:SHF:中:以数据效率揭示可靠性关键电路的罕见设计故障
- 批准号:
2215573 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Data-Efficient Uncovering of Rare Design Failures for Reliability-Critical Circuits
合作研究:SHF:中:以数据效率揭示可靠性关键电路的罕见设计故障
- 批准号:
1956219 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
III: Small: Collaborative Research: Combinatorial Collaborative Clustering for Simultaneous Patient Stratification and Biomarker Identification
III:小型:协作研究:用于同时进行患者分层和生物标志物识别的组合协作聚类
- 批准号:
1812641 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
AF: Small: Collaborative Research: Personalized Environmental Monitoring of Type 1 Diabetes (T1D): A Dynamic System Perspective
AF:小型:合作研究:1 型糖尿病 (T1D) 的个性化环境监测:动态系统视角
- 批准号:
1718513 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Knowledge-driven Analytics, Model Uncertainty, and Experiment Design
职业:知识驱动的分析、模型不确定性和实验设计
- 批准号:
1553281 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
EAGER: Collaborative Research: Tracking of KOR1 Protein Transport in Arabidopsis using Fluorescent-Timer Imaging System
EAGER:合作研究:使用荧光定时器成像系统追踪拟南芥中的 KOR1 蛋白转运
- 批准号:
1547557 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
International Workshop on Computational Network Biology: Modeling, Analysis, and Control (CNB-MAC 2015)
计算网络生物学国际研讨会:建模、分析和控制 (CNB-MAC 2015)
- 批准号:
1546793 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
基于高阶读数的拓扑关联结构域识别和比对方法研究
- 批准号:62372156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
自然场景下基于自监督的精准视频情感识别研究
- 批准号:62362003
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
社交媒体中的上市公司谣言识别、后果及治理研究:多模态深度学习视角
- 批准号:72302018
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多级语义感知的无人机遥感视频事件识别方法研究
- 批准号:62371083
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于荧光共振能量转移及指示剂置换法策略纳米组装体比率荧光识别三磷酸腺苷
- 批准号:22361028
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Identifying potential trade-offs of adapting to climate change
确定适应气候变化的潜在权衡
- 批准号:
DP240100230 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Discovery Projects
Identifying key fire drivers in Australia; biomass, climate or people
确定澳大利亚的主要火灾驱动因素;
- 批准号:
DE240100340 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Discovery Early Career Researcher Award
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
- 批准号:
2342936 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
- 批准号:
2342937 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Identifying the goals and strategies people use to make others feel worse
确定人们用来让别人感觉更糟的目标和策略
- 批准号:
FT230100401 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
ARC Future Fellowships