Collaborative Research: Algorithms, Theory, and Validation of Deep Graph Learning with Limited Supervision: A Continuous Perspective

协作研究:有限监督下的深度图学习的算法、理论和验证:连续的视角

基本信息

  • 批准号:
    2208361
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Graph-structured data is ubiquitous in scientific and artificial intelligence applications, for instance, particle physics, computational chemistry, drug discovery, neural science, recommender systems, robotics, social networks, and knowledge graphs. Graph neural networks (GNNs) have achieved tremendous success in a broad class of graph learning tasks, including graph node classification, graph edge prediction, and graph generation. Nevertheless, there are several bottlenecks of GNNs: 1) In contrast to many deep networks such as convolutional neural networks, it has been noticed that increasing the depth of GNNs results in a severe accuracy degradation, which has been interpreted as over-smoothing in the machine learning community. 2) The performance of GNNs relies heavily on a sufficient number of labeled graph nodes; the prediction of GNNs will become significantly less reliable when less labeled data is available. This research aims to address these challenges by developing new mathematical understanding of GNNs and theoretically-principled algorithms for graph deep learning with less training data. The project will train graduate students and postdoctoral associates through involvement in the research. The project will also integrate the research into teaching to advance data science education.This project aims to develop next-generation continuous-depth GNNs leveraging computational mathematics tools and insights and to advance data-driven scientific simulation using the new GNNs. This project has three interconnected thrusts that revolve around pushing the envelope of theory and practice in graph deep learning with limited supervision using PDE and harmonic analysis tools: 1) developing a new generation of diffusion-based GNNs that are certifiable to learning with deep architectures and less training data; 2) developing a new efficient attention-based approach for learning graph structures from the underlying data accompanied by uncertainty quantification; and 3) application validation in learning-assisted scientific simulation and multi-modal learning and software development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图形结构的数据在科学和人工智能应用中无处不在,例如粒子物理,计算化学,药物发现,神经科学,推荐系统,机器人技术,社交网络和知识图。图形神经网络(GNN)在广泛的图形学习任务中取得了巨大的成功,包括图节点分类,图形边缘预测和图形生成。然而,有几种gnns的瓶颈:1)与许多深层网络(例如卷积神经网络)相反,已经注意到,增加GNNS的深度会导致严重的准确性降解,这被解释为过度易于过度的降解。机器学习社区。 2)GNN的性能在很大程度上取决于足够数量的标记图节点;当可用的标记数据较少时,GNN的预测将变得明显降低。这项研究旨在通过对GNN和理论原理算法进行新的数学理解来解决这些挑战,以使用较少的培训数据来绘制深度学习。该项目将通过参与研究来培训研究生和博士后同事。该项目还将将研究整合到进步数据科学教育中。该项目旨在开发下一代连续深度的GNN,利用计算数学工具和见解,并使用新的GNN来推进数据驱动的科学模拟。该项目具有三个相互连接的推力,围绕着使用PDE和谐波分析工具有限的监督来推动理论和实践中的理论和实践的信封:1)开发新一代的基于扩散的GNN,可以通过深层建筑和深层学习和较少的培训数据; 2)从基础数据中开发一种新的基于注意力的方法来学习图形结构,并伴随着不确定性量化; 3)在学习辅助科学模拟和多模式学习和软件开发中的应用验证。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响评估标准通过评估来获得支持的。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A deterministic gradient-based approach to avoid saddle points
一种避免鞍点的基于确定性梯度的方法
Efficient and Reliable Overlay Networks for Decentralized Federated Learning
  • DOI:
    10.1137/21m1465081
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yifan Hua;Kevin Miller;A. Bertozzi;Chen Qian;Bao Wang
  • 通讯作者:
    Yifan Hua;Kevin Miller;A. Bertozzi;Chen Qian;Bao Wang
Implicit Graph Neural Networks: A Monotone Operator Viewpoint
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Justin Baker;Qingsong Wang;C. Hauck;Bao Wang
  • 通讯作者:
    Justin Baker;Qingsong Wang;C. Hauck;Bao Wang
Accelerated Sparse Recovery via Gradient Descent with Nonlinear Conjugate Gradient Momentum
  • DOI:
    10.1007/s10915-023-02148-y
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Mengqi Hu;Y. Lou;Bao Wang;Ming Yan;Xiu Yang;Q. Ye
  • 通讯作者:
    Mengqi Hu;Y. Lou;Bao Wang;Ming Yan;Xiu Yang;Q. Ye
Learning Proper Orthogonal Decomposition of Complex Dynamics Using Heavy-ball Neural ODEs
使用重球神经常微分方程学习复杂动力学的正确正交分解
  • DOI:
    10.1007/s10915-023-02176-8
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Baker, Justin;Cherkaev, Elena;Narayan, Akil;Wang, Bao
  • 通讯作者:
    Wang, Bao
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bao Wang其他文献

Decentralized Federated Averaging
去中心化联合平均
Tunable optomechanically induced transparency in a gain-assisted optomechanical system
增益辅助光机械系统中可调谐光机械诱导透明度
Instant Strong and Responsive Underwater Adhesion Manifested by Bioinspired Supramolecular Polymeric Adhesives
仿生超分子聚合物粘合剂表现出瞬间强效、灵敏的水下粘合力
  • DOI:
    10.1021/acs.macromol.1c02361
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Jiang Wu;H;an Lei;Xinzi Fang;Bao Wang;Guang Yang;Rachel K. O'Reilly;Zhongkai Wang;Zan Hua;Guangming Liu
  • 通讯作者:
    Guangming Liu
Rechargeable Batteries: Formation of Septuple‐Shelled (Co2/3Mn1/3)(Co5/6Mn1/6)2O4 Hollow Spheres as Electrode Material for Alkaline Rechargeable Battery (Adv. Mater. 34/2017)
可充电电池:作为碱性可充电电池电极材料的七重壳 (Co2/3Mn1/3)(Co5/6Mn1/6)2O4 空心球的形成 (Adv. Mater. 34/2017)
  • DOI:
    10.1002/adma.201770247
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    X. Zhao;R. Yu;Hongjie Tang;D. Mao;Jian Qi;Bao Wang;Yu Zhang;Huijun Zhao;Wenping Hu;Dan Wang
  • 通讯作者:
    Dan Wang
An Accurate Physics-Based Method for Calculating DC Inductance of a New Shape Inductor
一种基于物理的精确计算新型电感器直流电感的方法
  • DOI:
    10.4028/www.scientific.net/amm.475-476.1693
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bao Wang;Guoyi Yu;Zhaoxia Zheng;Zhang Li;Jiangbo Lei;Zhige Zou;Shijun Liu;X. Zou
  • 通讯作者:
    X. Zou

Bao Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bao Wang', 18)}}的其他基金

Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: Differential Equations Motivated Multi-Agent Sequential Deep Learning: Algorithms, Theory, and Validation
协作研究:微分方程驱动的多智能体序列深度学习:算法、理论和验证
  • 批准号:
    2152762
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Student Support: 18th IEEE International Conference on eScience
学生支持:第 18 届 IEEE 国际电子科学会议
  • 批准号:
    2219510
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Robust, Accurate and Efficient Graph-Structured RNN for Spatio-Temporal Forecasting and Anomaly Detection
合作研究:ATD:用于时空预测和异常检测的鲁棒、准确和高效的图结构 RNN
  • 批准号:
    2110145
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Robust, Accurate and Efficient Graph-Structured RNN for Spatio-Temporal Forecasting and Anomaly Detection
合作研究:ATD:用于时空预测和异常检测的鲁棒、准确和高效的图结构 RNN
  • 批准号:
    1924935
  • 财政年份:
    2019
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant

相似国自然基金

移动群智感知中的协作优化关键算法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于领域适应算法的人机协作学习能力泛化关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于能量波束成型的无线携能通信网络协作定位算法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
复杂多变水下环境下多AUV自组织协作围捕算法研究
  • 批准号:
    52001195
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
多跳协作编码系统中基于高阶张量的接收机算法研究
  • 批准号:
    62001008
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
  • 批准号:
    2422926
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
  • 批准号:
    2347322
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402283
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
  • 批准号:
    2347321
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402284
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了