Collaborative Research: Differential Equations Motivated Multi-Agent Sequential Deep Learning: Algorithms, Theory, and Validation
协作研究:微分方程驱动的多智能体序列深度学习:算法、理论和验证
基本信息
- 批准号:2152762
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Sequential data observed from multiple agents is ubiquitous in artificial intelligence (AI) and scientific applications, for example, in computer vision, natural language processing, robotics, computational biology and biophysics, and knowledge graphs. Learning from sequentially observed data often provides a global understanding of the underlying system and yields more reliable predictions than learning from a non-sequentially (single-shot) observed data. Sequential data is often irregularly-sampled in time and space and when this is combined with the interaction between agents, it raises tremendous challenges for machine learning. This project addresses these challenges by developing new mathematical understandings of these bottlenecks combined with new mathematically-principled deep learning algorithms for sequential and graph learning. Anticipated results and algorithms from this project will have broad applicability to important societal issues, such as pandemic spread, cooperative robotics, and environmental change. The project includes research training opportunities for graduate students.This project bridges ordinary differential equations (ODEs) and partial differential equations (PDEs) theory with multi-agent sequential learning practice. The project further leverages ODE and PDE insights to advance theoretically-grounded algorithms for deep sequential and graph learning. This project synergistically integrates recent advances in neural ODE methods with recent advances in graph networks for machine learning. The project develops and explores building next-generation algorithms based on wave equations on graphs, coupling second-order continuous dynamics in time with graph filtering. The research includes theoretical guarantees for the new methods in overcoming the over-smoothing issue, to enable sequential learning on graphs with deep architectures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从多个代理观察到的顺序数据在人工智能(AI)和科学应用中无处不在,例如在计算机视觉,自然语言处理,机器人技术,计算生物学和生物物理学以及知识图中。从依次观察到的数据中学习通常提供了对基础系统的全球理解,并产生比从非序列(单次)观察到的数据中获得更可靠的预测。顺序数据通常会在时间和空间中不规则地采样,当这种数据与代理之间的相互作用相结合时,它会给机器学习带来巨大的挑战。该项目通过对这些瓶颈进行新的数学理解,再加上新的数学原理深度学习算法来解决这些挑战,以进行顺序学习和图形学习。该项目的预期结果和算法将对重要的社会问题(例如大流行,合作机器人技术和环境变化)具有广泛的适用性。该项目包括为研究生提供的研究培训机会。该项目桥接了具有多代理顺序学习实践的普通微分方程(ODE)和部分微分方程(PDES)理论。该项目进一步利用ODE和PDE见解来推进理论上的算法,以进行深层顺序学习和图形学习。该项目协同整合了神经ode方法的最新进展与机器学习图网络的最新进展。该项目基于图形上的波方程来开发和探索构建下一代算法,并将二阶连续动态耦合到时间与图形滤波。 这项研究包括在克服过度平滑问题的新方法的理论保证中,以实现具有深度建筑的图表的顺序学习。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点评估来获得支持的,并具有更广泛的影响标准。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Implicit Graph Neural Networks: A Monotone Operator Viewpoint
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Justin Baker;Qingsong Wang;C. Hauck;Bao Wang
- 通讯作者:Justin Baker;Qingsong Wang;C. Hauck;Bao Wang
Efficient and Reliable Overlay Networks for Decentralized Federated Learning
- DOI:10.1137/21m1465081
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Yifan Hua;Kevin Miller;A. Bertozzi;Chen Qian;Bao Wang
- 通讯作者:Yifan Hua;Kevin Miller;A. Bertozzi;Chen Qian;Bao Wang
Learning Proper Orthogonal Decomposition of Complex Dynamics Using Heavy-ball Neural ODEs
使用重球神经常微分方程学习复杂动力学的正确正交分解
- DOI:10.1007/s10915-023-02176-8
- 发表时间:2023
- 期刊:
- 影响因子:2.5
- 作者:Baker, Justin;Cherkaev, Elena;Narayan, Akil;Wang, Bao
- 通讯作者:Wang, Bao
How does momentum benefit deep neural networks architecture design? A few case studies
- DOI:10.1007/s40687-022-00352-0
- 发表时间:2021-10
- 期刊:
- 影响因子:1.2
- 作者:Bao Wang;Hedi Xia;T. Nguyen;S. Osher
- 通讯作者:Bao Wang;Hedi Xia;T. Nguyen;S. Osher
Improving Deep Neural Networks’ Training for Image Classification With Nonlinear Conjugate Gradient-Style Adaptive Momentum
使用非线性共轭梯度式自适应动量改进深度神经网络 - 图像分类训练
- DOI:10.1109/tnnls.2023.3255783
- 发表时间:2023
- 期刊:
- 影响因子:10.4
- 作者:Wang, Bao;Ye, Qiang
- 通讯作者:Ye, Qiang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bao Wang其他文献
Facile fabrication of hollow CuO nanocubes for enhanced lithium/sodium storage performance
轻松制造空心 CuO 纳米立方体以增强锂/钠存储性能
- DOI:
10.1039/d1ce00704a - 发表时间:
2021 - 期刊:
- 影响因子:3.1
- 作者:
Jie Zhao;Yuyan Zhao;Wen-Ce Yue;Shu-Min Zheng;Xue Li;Ning Gao;Ting Zhu;Yu-Jiao Zhang;Guang-Ming Xia;Bao Wang - 通讯作者:
Bao Wang
Effect of Municipal Solid Waste Incineration Fly Ash Leachate on the Hydraulic Performance of a Geosynthetic Clay Liner
城市生活垃圾焚烧飞灰渗滤液对土工合成粘土衬垫水力性能的影响
- DOI:
10.1007/s40996-021-00674-z - 发表时间:
2021-06 - 期刊:
- 影响因子:0
- 作者:
Bao Wang;Xingling Dong;Tongtong Dou;Bizhou Ge - 通讯作者:
Bizhou Ge
The influence of wind turbine blade rotation on anemometer
风力机叶片旋转对风速计的影响
- DOI:
10.1088/1742-6596/2280/1/012008 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yaqiang Zhou;Lizhu Tian;Zhiwen Jiang;Yapeng Li;Zhaohe Wu;Chenglong Qi;Y. Gou;Yonghe Xu;Dayu Du;Bao Wang;Yuan Wu;W. Feng;Peng Li - 通讯作者:
Peng Li
Study on the startup characteristics of the methanogenic UASB reactor under acid condition at pH5.5
pH5.5酸性条件下产甲烷UASB反应器启动特性研究
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Bao Wang;Jie Ding;Hongjian Liu;Chunmiao Liu;Wangbin Cheng;Luyan Zhang;Xianshu Liu;Nanqi Ren - 通讯作者:
Nanqi Ren
Heterogeneous Nucleation in Semicrystalline Polymers
- DOI:
10.15167/wang-bao_phd2020-03-20 - 发表时间:
2020-03 - 期刊:
- 影响因子:0
- 作者:
Bao Wang - 通讯作者:
Bao Wang
Bao Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bao Wang', 18)}}的其他基金
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219956 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Algorithms, Theory, and Validation of Deep Graph Learning with Limited Supervision: A Continuous Perspective
协作研究:有限监督下的深度图学习的算法、理论和验证:连续的视角
- 批准号:
2208361 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Student Support: 18th IEEE International Conference on eScience
学生支持:第 18 届 IEEE 国际电子科学会议
- 批准号:
2219510 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Robust, Accurate and Efficient Graph-Structured RNN for Spatio-Temporal Forecasting and Anomaly Detection
合作研究:ATD:用于时空预测和异常检测的鲁棒、准确和高效的图结构 RNN
- 批准号:
2110145 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Robust, Accurate and Efficient Graph-Structured RNN for Spatio-Temporal Forecasting and Anomaly Detection
合作研究:ATD:用于时空预测和异常检测的鲁棒、准确和高效的图结构 RNN
- 批准号:
1924935 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似国自然基金
基于边界控制的网络化抛物型偏微分系统一致性研究
- 批准号:62303163
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
分数阶微分引导的深度学习方法研究
- 批准号:62372359
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
流体力学和非线性弹性力学中偏微分方程解的正则性研究
- 批准号:12301141
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
奇异黎曼叶状结构的微分几何学研究
- 批准号:12371048
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于微分拟变分不等式的电力-交通耦合网络动态定价机制研究
- 批准号:52307087
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Characterizing the genetic etiology of delayed puberty with integrative genomic techniques
利用综合基因组技术表征青春期延迟的遗传病因
- 批准号:
10663605 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
- 批准号:
2317192 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
- 批准号:
2317194 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: Construction and Properties of Sobolev Spaces of Differential Forms on Smooth and Lipschitz Manifolds with Applications to FEEC
合作研究:光滑流形和 Lipschitz 流形上微分形式 Sobolev 空间的构造和性质及其在 FEEC 中的应用
- 批准号:
2309779 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
- 批准号:
2317193 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant