Collaborative Research: Differential Equations Motivated Multi-Agent Sequential Deep Learning: Algorithms, Theory, and Validation

协作研究:微分方程驱动的多智能体序列深度学习:算法、理论和验证

基本信息

  • 批准号:
    2152762
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Sequential data observed from multiple agents is ubiquitous in artificial intelligence (AI) and scientific applications, for example, in computer vision, natural language processing, robotics, computational biology and biophysics, and knowledge graphs. Learning from sequentially observed data often provides a global understanding of the underlying system and yields more reliable predictions than learning from a non-sequentially (single-shot) observed data. Sequential data is often irregularly-sampled in time and space and when this is combined with the interaction between agents, it raises tremendous challenges for machine learning. This project addresses these challenges by developing new mathematical understandings of these bottlenecks combined with new mathematically-principled deep learning algorithms for sequential and graph learning. Anticipated results and algorithms from this project will have broad applicability to important societal issues, such as pandemic spread, cooperative robotics, and environmental change. The project includes research training opportunities for graduate students.This project bridges ordinary differential equations (ODEs) and partial differential equations (PDEs) theory with multi-agent sequential learning practice. The project further leverages ODE and PDE insights to advance theoretically-grounded algorithms for deep sequential and graph learning. This project synergistically integrates recent advances in neural ODE methods with recent advances in graph networks for machine learning. The project develops and explores building next-generation algorithms based on wave equations on graphs, coupling second-order continuous dynamics in time with graph filtering. The research includes theoretical guarantees for the new methods in overcoming the over-smoothing issue, to enable sequential learning on graphs with deep architectures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从多个代理观察到的序列数据在人工智能 (AI) 和科学应用中无处不在,例如计算机视觉、自然语言处理、机器人、计算生物学和生物物理学以及知识图谱。从顺序观察的数据中学习通常可以提供对底层系统的全局理解,并比从非顺序(单次)观察的数据中学习产生更可靠的预测。序列数据通常在时间和空间上不规则采样,当这与代理之间的交互相结合时,它给机器学习带来了巨大的挑战。该项目通过对这些瓶颈提出新的数学理解,并结合用于顺序学习和图形学习的新的数学原理深度学习算法来解决这些挑战。该项目的预期结果和算法将广泛适用于重要的社会问题,例如流行病传播、协作​​机器人和环境变化。该项目包括为研究生提供研究培训机会。该项目将常微分方程 (ODE) 和偏微分方程 (PDE) 理论与多智能体顺序学习实践联系起来。该项目进一步利用 ODE 和 PDE 见解来推进基于理论的深度序列和图形学习算法。该项目协同地将神经 ODE 方法的最新进展与机器学习图网络的最新进展相结合。该项目开发并探索基于图波动方程构建下一代算法,将二阶连续动力学及时与图过滤耦合。 该研究为克服过度平滑问题的新方法提供了理论保证,从而能够在具有深层架构的图上进行顺序学习。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Implicit Graph Neural Networks: A Monotone Operator Viewpoint
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Justin Baker;Qingsong Wang;C. Hauck;Bao Wang
  • 通讯作者:
    Justin Baker;Qingsong Wang;C. Hauck;Bao Wang
Efficient and Reliable Overlay Networks for Decentralized Federated Learning
  • DOI:
    10.1137/21m1465081
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yifan Hua;Kevin Miller;A. Bertozzi;Chen Qian;Bao Wang
  • 通讯作者:
    Yifan Hua;Kevin Miller;A. Bertozzi;Chen Qian;Bao Wang
Learning Proper Orthogonal Decomposition of Complex Dynamics Using Heavy-ball Neural ODEs
使用重球神经常微分方程学习复杂动力学的正确正交分解
  • DOI:
    10.1007/s10915-023-02176-8
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Baker, Justin;Cherkaev, Elena;Narayan, Akil;Wang, Bao
  • 通讯作者:
    Wang, Bao
How does momentum benefit deep neural networks architecture design? A few case studies
  • DOI:
    10.1007/s40687-022-00352-0
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Bao Wang;Hedi Xia;T. Nguyen;S. Osher
  • 通讯作者:
    Bao Wang;Hedi Xia;T. Nguyen;S. Osher
Improving Deep Neural Networks’ Training for Image Classification With Nonlinear Conjugate Gradient-Style Adaptive Momentum
使用非线性共轭梯度式自适应动量改进深度神经网络 - 图像分类训练
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bao Wang其他文献

Decentralized Federated Averaging
去中心化联合平均
Tunable optomechanically induced transparency in a gain-assisted optomechanical system
增益辅助光机械系统中可调谐光机械诱导透明度
Instant Strong and Responsive Underwater Adhesion Manifested by Bioinspired Supramolecular Polymeric Adhesives
仿生超分子聚合物粘合剂表现出瞬间强效、灵敏的水下粘合力
  • DOI:
    10.1021/acs.macromol.1c02361
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Jiang Wu;H;an Lei;Xinzi Fang;Bao Wang;Guang Yang;Rachel K. O'Reilly;Zhongkai Wang;Zan Hua;Guangming Liu
  • 通讯作者:
    Guangming Liu
Rechargeable Batteries: Formation of Septuple‐Shelled (Co2/3Mn1/3)(Co5/6Mn1/6)2O4 Hollow Spheres as Electrode Material for Alkaline Rechargeable Battery (Adv. Mater. 34/2017)
可充电电池:作为碱性可充电电池电极材料的七重壳 (Co2/3Mn1/3)(Co5/6Mn1/6)2O4 空心球的形成 (Adv. Mater. 34/2017)
  • DOI:
    10.1002/adma.201770247
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    X. Zhao;R. Yu;Hongjie Tang;D. Mao;Jian Qi;Bao Wang;Yu Zhang;Huijun Zhao;Wenping Hu;Dan Wang
  • 通讯作者:
    Dan Wang
An Accurate Physics-Based Method for Calculating DC Inductance of a New Shape Inductor
一种基于物理的精确计算新型电感器直流电感的方法
  • DOI:
    10.4028/www.scientific.net/amm.475-476.1693
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bao Wang;Guoyi Yu;Zhaoxia Zheng;Zhang Li;Jiangbo Lei;Zhige Zou;Shijun Liu;X. Zou
  • 通讯作者:
    X. Zou

Bao Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bao Wang', 18)}}的其他基金

Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Algorithms, Theory, and Validation of Deep Graph Learning with Limited Supervision: A Continuous Perspective
协作研究:有限监督下的深度图学习的算法、理论和验证:连续的视角
  • 批准号:
    2208361
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Student Support: 18th IEEE International Conference on eScience
学生支持:第 18 届 IEEE 国际电子科学会议
  • 批准号:
    2219510
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Robust, Accurate and Efficient Graph-Structured RNN for Spatio-Temporal Forecasting and Anomaly Detection
合作研究:ATD:用于时空预测和异常检测的鲁棒、准确和高效的图结构 RNN
  • 批准号:
    2110145
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Robust, Accurate and Efficient Graph-Structured RNN for Spatio-Temporal Forecasting and Anomaly Detection
合作研究:ATD:用于时空预测和异常检测的鲁棒、准确和高效的图结构 RNN
  • 批准号:
    1924935
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似国自然基金

基于自适应笛卡尔网格-格子波尔兹曼方法和自动微分方法的高效非定常流动导数计算方法研究
  • 批准号:
    12302379
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于不连续控制策略的生物微分系统的动力学研究
  • 批准号:
    12361037
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
非全局Lipschitz条件下时滞随机微分方程数值方法的研究
  • 批准号:
    12301521
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
智能感知织物界面电阻耦合传感机制及负微分电阻效应研究
  • 批准号:
    62301290
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于微分几何理论的集群航天器容错博弈控制研究
  • 批准号:
    62303218
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Characterizing the genetic etiology of delayed puberty with integrative genomic techniques
利用综合基因组技术表征青春期延迟的遗传病因
  • 批准号:
    10663605
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
  • 批准号:
    2317192
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
  • 批准号:
    2317194
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Collaborative Research: Construction and Properties of Sobolev Spaces of Differential Forms on Smooth and Lipschitz Manifolds with Applications to FEEC
合作研究:光滑流形和 Lipschitz 流形上微分形式 Sobolev 空间的构造和性质及其在 FEEC 中的应用
  • 批准号:
    2309779
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
  • 批准号:
    2317193
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了