Collaborative Research: ATD: Robust, Accurate and Efficient Graph-Structured RNN for Spatio-Temporal Forecasting and Anomaly Detection
合作研究:ATD:用于时空预测和异常检测的鲁棒、准确和高效的图结构 RNN
基本信息
- 批准号:2110145
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-15 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project aims to develop robust, efficient, and transferrable deep learning algorithms for prediction and anomaly detection in human spatio-temporal dynamics. This will be a fundamental step in providing reliable and speedy decision support for mitigating infectious diseases and countering threats in a time varying and spatially complex environment. The project shall advance recent computational tools (deep neural networks) in adversarial conditions and on resource limited (low cost, low energy) platform, thereby contribute to information technology in adversarial learning, mobile computing and effective decision making. A broad range of applications include threat detection and prediction for traffic and public transportation networks, security and privacy critical data analysis and prediction, threat detection and error correction for hydraulic, electrical and nuclear power systems. The approaches to be used involve novel techniques in high dimensional non-smooth non-convex optimization and graph representation. Specifically, the project shall study (1) multi-scale graph-structured recurrent neural networks for spatio-temporal data modeling, prediction and anomaly detection; (2) adversarially robust, accurate, and transferable deep learning algorithms based on advection-diffusion equations; (3) efficient quantization algorithms under adversarial conditions to reduce the latency of deep networks. The projects shall train a diverse body of graduate and undergraduate students at the Irvine and Los Angeles campuses of University of California through collaborative education and research activities in applied mathematics, computer science, data science and social science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在开发人类时空动力学中的预测和异常检测的强大,高效和可转让的深度学习算法。这将是为减轻传染病和在空间复杂的时间内提供可靠和快速的决策支持的基本步骤。 该项目应在对抗条件和资源有限(低成本,低能)平台上推进最近的计算工具(深神经网络),从而有助于对抗性学习,移动计算和有效决策的信息技术。广泛的应用程序包括对交通和公共交通网络的威胁检测和预测,安全与隐私批判数据分析和预测,液压,电气和核电系统的威胁检测和误差校正。 所使用的方法涉及高维非平滑非凸优化和图表表示的新技术。具体而言,该项目应研究(1)多尺度的图形结构复发性神经网络,以进行时空数据建模,预测和异常检测; (2)基于对流扩散方程的对抗性,准确和可转移的深度学习算法; (3)在对抗条件下有效的量化算法,以减少深网的潜伏期。这些项目应通过在应用数学,计算机科学,数据科学和社会科学领域的合作教育和研究活动中培训加利福尼亚大学欧文和洛杉矶校园的各种各样的研究生和本科生。该奖项反映了NSF的法定使命,并认为通过基金会的知识优点和广泛的crietia crietia criperia criperia criperia criperia criperia criperia cribitia cribitia criperia rection the Appliation奖。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Implicit Graph Neural Networks: A Monotone Operator Viewpoint
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Justin Baker;Qingsong Wang;C. Hauck;Bao Wang
- 通讯作者:Justin Baker;Qingsong Wang;C. Hauck;Bao Wang
A deterministic gradient-based approach to avoid saddle points
一种避免鞍点的基于确定性梯度的方法
- DOI:10.1017/s0956792522000316
- 发表时间:2022
- 期刊:
- 影响因子:1.9
- 作者:Kreusser, L. M.;Osher, S. J.;Wang, B.
- 通讯作者:Wang, B.
Efficient and Reliable Overlay Networks for Decentralized Federated Learning
- DOI:10.1137/21m1465081
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Yifan Hua;Kevin Miller;A. Bertozzi;Chen Qian;Bao Wang
- 通讯作者:Yifan Hua;Kevin Miller;A. Bertozzi;Chen Qian;Bao Wang
How does momentum benefit deep neural networks architecture design? A few case studies
- DOI:10.1007/s40687-022-00352-0
- 发表时间:2021-10
- 期刊:
- 影响因子:1.2
- 作者:Bao Wang;Hedi Xia;T. Nguyen;S. Osher
- 通讯作者:Bao Wang;Hedi Xia;T. Nguyen;S. Osher
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bao Wang其他文献
Facile fabrication of hollow CuO nanocubes for enhanced lithium/sodium storage performance
轻松制造空心 CuO 纳米立方体以增强锂/钠存储性能
- DOI:
10.1039/d1ce00704a - 发表时间:
2021 - 期刊:
- 影响因子:3.1
- 作者:
Jie Zhao;Yuyan Zhao;Wen-Ce Yue;Shu-Min Zheng;Xue Li;Ning Gao;Ting Zhu;Yu-Jiao Zhang;Guang-Ming Xia;Bao Wang - 通讯作者:
Bao Wang
Effect of Municipal Solid Waste Incineration Fly Ash Leachate on the Hydraulic Performance of a Geosynthetic Clay Liner
城市生活垃圾焚烧飞灰渗滤液对土工合成粘土衬垫水力性能的影响
- DOI:
10.1007/s40996-021-00674-z - 发表时间:
2021-06 - 期刊:
- 影响因子:0
- 作者:
Bao Wang;Xingling Dong;Tongtong Dou;Bizhou Ge - 通讯作者:
Bizhou Ge
The influence of wind turbine blade rotation on anemometer
风力机叶片旋转对风速计的影响
- DOI:
10.1088/1742-6596/2280/1/012008 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yaqiang Zhou;Lizhu Tian;Zhiwen Jiang;Yapeng Li;Zhaohe Wu;Chenglong Qi;Y. Gou;Yonghe Xu;Dayu Du;Bao Wang;Yuan Wu;W. Feng;Peng Li - 通讯作者:
Peng Li
Study on the startup characteristics of the methanogenic UASB reactor under acid condition at pH5.5
pH5.5酸性条件下产甲烷UASB反应器启动特性研究
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Bao Wang;Jie Ding;Hongjian Liu;Chunmiao Liu;Wangbin Cheng;Luyan Zhang;Xianshu Liu;Nanqi Ren - 通讯作者:
Nanqi Ren
Heterogeneous Nucleation in Semicrystalline Polymers
- DOI:
10.15167/wang-bao_phd2020-03-20 - 发表时间:
2020-03 - 期刊:
- 影响因子:0
- 作者:
Bao Wang - 通讯作者:
Bao Wang
Bao Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bao Wang', 18)}}的其他基金
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219956 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Differential Equations Motivated Multi-Agent Sequential Deep Learning: Algorithms, Theory, and Validation
协作研究:微分方程驱动的多智能体序列深度学习:算法、理论和验证
- 批准号:
2152762 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Algorithms, Theory, and Validation of Deep Graph Learning with Limited Supervision: A Continuous Perspective
协作研究:有限监督下的深度图学习的算法、理论和验证:连续的视角
- 批准号:
2208361 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Student Support: 18th IEEE International Conference on eScience
学生支持:第 18 届 IEEE 国际电子科学会议
- 批准号:
2219510 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Robust, Accurate and Efficient Graph-Structured RNN for Spatio-Temporal Forecasting and Anomaly Detection
合作研究:ATD:用于时空预测和异常检测的鲁棒、准确和高效的图结构 RNN
- 批准号:
1924935 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219956 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
- 批准号:
2220495 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319370 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建模和风险缓解
- 批准号:
2319552 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219904 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant