Collaborative Research: ATD: Robust, Accurate and Efficient Graph-Structured RNN for Spatio-Temporal Forecasting and Anomaly Detection

合作研究:ATD:用于时空预测和异常检测的鲁棒、准确和高效的图结构 RNN

基本信息

  • 批准号:
    2110145
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-15 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

The project aims to develop robust, efficient, and transferrable deep learning algorithms for prediction and anomaly detection in human spatio-temporal dynamics. This will be a fundamental step in providing reliable and speedy decision support for mitigating infectious diseases and countering threats in a time varying and spatially complex environment. The project shall advance recent computational tools (deep neural networks) in adversarial conditions and on resource limited (low cost, low energy) platform, thereby contribute to information technology in adversarial learning, mobile computing and effective decision making. A broad range of applications include threat detection and prediction for traffic and public transportation networks, security and privacy critical data analysis and prediction, threat detection and error correction for hydraulic, electrical and nuclear power systems. The approaches to be used involve novel techniques in high dimensional non-smooth non-convex optimization and graph representation. Specifically, the project shall study (1) multi-scale graph-structured recurrent neural networks for spatio-temporal data modeling, prediction and anomaly detection; (2) adversarially robust, accurate, and transferable deep learning algorithms based on advection-diffusion equations; (3) efficient quantization algorithms under adversarial conditions to reduce the latency of deep networks. The projects shall train a diverse body of graduate and undergraduate students at the Irvine and Los Angeles campuses of University of California through collaborative education and research activities in applied mathematics, computer science, data science and social science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Implicit Graph Neural Networks: A Monotone Operator Viewpoint
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Justin Baker;Qingsong Wang;C. Hauck;Bao Wang
  • 通讯作者:
    Justin Baker;Qingsong Wang;C. Hauck;Bao Wang
A deterministic gradient-based approach to avoid saddle points
一种避免鞍点的基于确定性梯度的方法
Efficient and Reliable Overlay Networks for Decentralized Federated Learning
  • DOI:
    10.1137/21m1465081
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yifan Hua;Kevin Miller;A. Bertozzi;Chen Qian;Bao Wang
  • 通讯作者:
    Yifan Hua;Kevin Miller;A. Bertozzi;Chen Qian;Bao Wang
How does momentum benefit deep neural networks architecture design? A few case studies
  • DOI:
    10.1007/s40687-022-00352-0
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Bao Wang;Hedi Xia;T. Nguyen;S. Osher
  • 通讯作者:
    Bao Wang;Hedi Xia;T. Nguyen;S. Osher
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bao Wang其他文献

Decentralized Federated Averaging
去中心化联合平均
Tunable optomechanically induced transparency in a gain-assisted optomechanical system
增益辅助光机械系统中可调谐光机械诱导透明度
Instant Strong and Responsive Underwater Adhesion Manifested by Bioinspired Supramolecular Polymeric Adhesives
仿生超分子聚合物粘合剂表现出瞬间强效、灵敏的水下粘合力
  • DOI:
    10.1021/acs.macromol.1c02361
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Jiang Wu;H;an Lei;Xinzi Fang;Bao Wang;Guang Yang;Rachel K. O'Reilly;Zhongkai Wang;Zan Hua;Guangming Liu
  • 通讯作者:
    Guangming Liu
Rechargeable Batteries: Formation of Septuple‐Shelled (Co2/3Mn1/3)(Co5/6Mn1/6)2O4 Hollow Spheres as Electrode Material for Alkaline Rechargeable Battery (Adv. Mater. 34/2017)
可充电电池:作为碱性可充电电池电极材料的七重壳 (Co2/3Mn1/3)(Co5/6Mn1/6)2O4 空心球的形成 (Adv. Mater. 34/2017)
  • DOI:
    10.1002/adma.201770247
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    X. Zhao;R. Yu;Hongjie Tang;D. Mao;Jian Qi;Bao Wang;Yu Zhang;Huijun Zhao;Wenping Hu;Dan Wang
  • 通讯作者:
    Dan Wang
An Accurate Physics-Based Method for Calculating DC Inductance of a New Shape Inductor
一种基于物理的精确计算新型电感器直流电感的方法
  • DOI:
    10.4028/www.scientific.net/amm.475-476.1693
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bao Wang;Guoyi Yu;Zhaoxia Zheng;Zhang Li;Jiangbo Lei;Zhige Zou;Shijun Liu;X. Zou
  • 通讯作者:
    X. Zou

Bao Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bao Wang', 18)}}的其他基金

Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Differential Equations Motivated Multi-Agent Sequential Deep Learning: Algorithms, Theory, and Validation
协作研究:微分方程驱动的多智能体序列深度学习:算法、理论和验证
  • 批准号:
    2152762
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Algorithms, Theory, and Validation of Deep Graph Learning with Limited Supervision: A Continuous Perspective
协作研究:有限监督下的深度图学习的算法、理论和验证:连续的视角
  • 批准号:
    2208361
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Student Support: 18th IEEE International Conference on eScience
学生支持:第 18 届 IEEE 国际电子科学会议
  • 批准号:
    2219510
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Robust, Accurate and Efficient Graph-Structured RNN for Spatio-Temporal Forecasting and Anomaly Detection
合作研究:ATD:用于时空预测和异常检测的鲁棒、准确和高效的图结构 RNN
  • 批准号:
    1924935
  • 财政年份:
    2019
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant

相似国自然基金

基于FRET受体上升时间的单分子高精度测量方法研究
  • 批准号:
    22304184
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
脂质多聚复合物mRNA纳米疫苗的构筑及抗肿瘤治疗研究
  • 批准号:
    52373161
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
屏障突破型原位线粒体基因递送系统用于治疗Leber遗传性视神经病变的研究
  • 批准号:
    82304416
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
细胞硬度介导口腔鳞癌细胞与CD8+T细胞间力学对话调控免疫杀伤的机制研究
  • 批准号:
    82373255
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
乙酸钙不动杆菌上调DUOX2激活PERK/ATF4内质网应激在炎症性肠病中的作用机制研究
  • 批准号:
    82300623
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
  • 批准号:
    2220495
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319370
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319552
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219904
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了