Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
基本信息
- 批准号:2317193
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Data privacy is a fundamental challenge across numerous applications that rely on graphs and network data, including healthcare, social networks, finance, and computational epidemiology. Adopting privacy-preserving solutions to practice in such applications is often hindered by the loss in utility and lack of scalability to large-scale problems with billions of nodes/edges. This project aims to develop private algorithms for several fundamental problems in graph mining and network science, that can scale to networks of the size that arise in real-world applications and provide good accuracy bounds. The project’s broader significance and importance are that private algorithms will become available to a new community of researchers from public-health policy planning, cybersecurity and social network analysis. Adopting graph differential privacy (DP) as the notion of privacy, this project achieves the above goals through fundamental contributions in privacy-preserving algorithm design for various fundamental problems in graph mining and network science, such as subgraph detection, node ranking, community detection, and studying properties of graph dynamical systems such as epidemic spread on networks. The project leverages tools from distributed computation, such as sampling and sketching, and develops innovative tools for graph DP to yield highly-scalable private graph algorithms with rigorous accuracy bounds (both in theory and practice). Finally, the project will lead to the development of a private graph processing system, which will be incorporated into a network science cyber-infrastructure. Accordingly, the tools of graph DP will be made available to the broader community of network science and computational epidemiology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数据隐私是众多依赖图形和网络数据的应用程序(包括医疗保健、社交网络、金融和计算流行病学)面临的基本挑战。在此类应用程序中采用隐私保护解决方案往往会因实用性的损失和缺乏而受到阻碍。具有数十亿节点/边缘的大规模问题的可扩展性 该项目旨在为图挖掘和网络科学中的几个基本问题开发私有算法,该算法可以扩展到实际应用中出现的网络规模并提供良好的准确性。界限。该项目更广泛的意义和重要性在于,私有算法将可供公共卫生政策规划、网络安全和社交网络分析领域的新研究人员使用。该项目采用图差分隐私(DP)作为隐私概念,实现了上述目标。通过为图挖掘和网络科学中的各种基本问题(例如子图检测、节点排序、社区检测)以及研究图动态系统的属性(例如网络上的流行病传播)的隐私保护算法设计做出基本贡献。分布式计算,例如采样和绘制草图,并开发用于图 DP 的创新工具,以产生具有严格精度范围的高度可扩展的私有图算法(在理论和实践上)最后,该项目将导致私有图处理系统的开发,该系统将被纳入其中。因此,图 DP 的工具将提供给更广泛的网络科学和计算流行病学社区。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和计算能力进行评估,被认为值得支持。更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anil Kumar Vullikanti其他文献
Anil Kumar Vullikanti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anil Kumar Vullikanti', 18)}}的其他基金
III: Medium: Collaborative Research: Detecting and Controlling Network-based Spread of Hospital Acquired Infections
III:媒介:合作研究:检测和控制医院获得性感染的网络传播
- 批准号:
1955797 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Using Phylodynamics and Line Lists for Adaptive COVID-19 Monitoring
RAPID:协作研究:使用系统动力学和线路列表进行自适应 COVID-19 监测
- 批准号:
2027848 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: F: Efficient Distributed Computation of Large-Scale Graph Problems in Epidemiology and Contagion Dynamics
BIGDATA:协作研究:F:流行病学和传染动力学中大规模图问题的高效分布式计算
- 批准号:
1931628 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: F: Efficient Distributed Computation of Large-Scale Graph Problems in Epidemiology and Contagion Dynamics
BIGDATA:协作研究:F:流行病学和传染动力学中大规模图问题的高效分布式计算
- 批准号:
1633028 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
ICES: Large: Collaborative Research: The Role of Space, Time and Information in Controlling Epidemics
ICES:大型:协作研究:空间、时间和信息在控制流行病中的作用
- 批准号:
1216000 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Cross-layer optimization in Cognitive Radio Networks in the Physical interference model based on SINR constraints: Algorithmic Foundations
职业:基于 SINR 约束的物理干扰模型中认知无线电网络的跨层优化:算法基础
- 批准号:
0845700 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: NECO: A Market-Driven Approach to Dynamic Spectrum Sharing
合作研究:NECO:市场驱动的动态频谱共享方法
- 批准号:
0831633 - 财政年份:2008
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
- 批准号:52364012
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
- 批准号:32301770
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
- 批准号:52302362
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
- 批准号:72302108
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
- 批准号:32300133
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant