Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths

合作研究:AF:中:(动态)匹配和最短路径的快速组合算法

基本信息

  • 批准号:
    2402283
  • 负责人:
  • 金额:
    $ 59.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-07-01 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

A graph is a collection of vertices (points or objects), and a collection of edges (links or lines), that connect pairs of vertices. Graphs are a central and an extensively studied type of mathematical object, and they are commonly used to model various problems in many different real world scenarios and applications. For example, it is natural to model a road network in a city, or a computer network, or friendship relationships in a social network as a graph. There are countless other scenarios where a problem one needs to solve, or an object one desires to study, can be naturally abstracted by a graph. As a consequence, the design of efficient algorithms for central graph problems is fundamental to computer science and beyond, and has a significant impact on many aspects of computation. As the amount of data that applications need to deal with grows, it is increasingly important to ensure that such algorithms are very fast. In this project, the investigators will study several central graph problems, such as Maximum Matching, Maximum Flow, and Shortest Paths, in two basic settings. The first is the standard model where the input graph is known in advance, and the goal is to design a fast algorithm for the problem, with running time not significantly higher than the time required to read the input, which is close to the fastest possible running time. The second is the model of dynamic algorithms, where the graph changes over time (for example, consider a road network, where the computation has to account for roads becoming more or less congested with traffic), and the goal is to quickly support queries about the graph, such as, for example, computing a short path between two given vertices. This project is organized along four main interconnected thrusts. The first thrust focuses on the design of algorithms for dynamic All-Pairs Shortest Paths (APSP), that can withstand an adaptive adversary, and that significantly improve upon the currently known tradeoffs between the approximation quality and the running time, in both directed and undirected graphs. Algorithms for APSP and its variants are often used in combination with the Multiplicative Weights Update framework to efficiently solve various flow and cut problems in graphs, and thus provide a valuable and powerful algorithmic toolkit. The second thrust is directed towards improving and extending known expander-related tools that are often used in the design of fast algorithms for various graph problems. Expanders are playing an increasingly central role in graph algorithms, and these tools can serve as building blocks for many other graph problems. The third thrust focuses on the Maximum Matching problem. Using techniques inspired by algorithms for dynamic shortest path in directed graphs, the goal of this part of the project is to develop fast combinatorial algorithms for both the bipartite and the general version of the problem. The final thrust focuses on designing improved algorithms for maintaining near-optimal matchings in dynamic graphs, building on insights and algorithms developed for the second and the third thrusts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图是连接顶点对的顶点(点或对象)的集合(点或对象),以及边缘(链接或行)的集合(链接或行)。图是一种中心和广泛研究的数学对象类型,它们通常用于在许多不同的现实世界场景和应用中对各种问题进行建模。例如,自然要在城市中的道路网络,计算机网络或社交网络中的友谊关系建模是很自然的。在其他情况下,一个人需要解决的问题,或者需要研究的对象可以自然地被图形抽象。因此,中央图问题的有效算法的设计是计算机科学及其他问题的基础,并且对计算的许多方面都有重大影响。 随着应用程序需要处理的数据数量的增长,确保此类算法非常快的速度越来越重要。在这个项目中,研究人员将在两个基本设置中研究几个中心图问题,例如最大匹配,最大流量和最短路径。第一个是预先知道输入图的标准模型,目标是为问题设计快速算法,运行时间不高于读取输入所需的时间,该输入接近最快的运行时间。第二个是动态算法的模型,其中图随时间变化(例如,考虑一个道路网络,计算必须说明道路变得或多或少被交通拥堵),其目标是快速支持有关图形的查询,例如,在两个给定的顶点之间计算一个短路径。该项目沿着四个主要相互连接的推力组织。第一个推力着重于动态全对最短路径(APSP)的算法设计,这些算法可以承受自适应对手,并且在有向质量和运行时间之间的当前已知的权衡方面可以显着改善定向和无方向的图表。 APSP及其变体的算法通常与乘法权重更新框架结合使用,以有效地解决图形中的各种流量和切割问题,从而提供了有价值且强大的算法工具包。第二个推力是针对改进和扩展已知的扩展器相关工具的,这些工具通常用于设计各种图形问题的快速算法。扩展器在图形算法中起着越来越重要的作用,这些工​​具可以作为许多其他图形问题的基础。第三个推力集中在最大匹配问题上。使用受算法启发的技术,用于有向图中的动态最短路径,该项目的目标是为双方和问题的一般版本开发快速组合算法。最终的推力重点是设计改进的算法,以在动态图中保持近乎最佳的匹配,这是基于第二和第三个推力为洞察力和算法而建立的。本奖反映了NSF的法定任务,并被认为是通过基金会的智力功能和广泛影响的评估来评估CRETERIA的评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Julia Chuzhoy其他文献

On Packing Low-Diameter Spanning Trees
关于打包小直径生成树
A Distanced Matching Game, Decremental APSP in Expanders, and Faster Deterministic Algorithms for Graph Cut Problems
距离匹配游戏、扩展器中的递减 APSP 以及图割问题的更快确定性算法
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Julia Chuzhoy
  • 通讯作者:
    Julia Chuzhoy
Improved Bounds for the Flat Wall Theorem
平壁定理的改进界限
  • DOI:
    10.1137/1.9781611973730.20
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Julia Chuzhoy
  • 通讯作者:
    Julia Chuzhoy
Towards Better Approximation of Graph Crossing Number
更好地近似图交叉数
Generalized Steiner Network
广义斯坦纳网络
  • DOI:
    10.1007/978-0-387-30162-4_161
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Julia Chuzhoy
  • 通讯作者:
    Julia Chuzhoy

Julia Chuzhoy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Julia Chuzhoy', 18)}}的其他基金

AF: Small: Graph Theory and Its Uses in Algorithms and Beyond
AF:小:图论及其在算法及其他领域的应用
  • 批准号:
    2006464
  • 财政年份:
    2020
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant
AF: Small: Graph Routing, Vertex Sparsifiers, and Connections to Graph Theory
AF:小:图路由、顶点稀疏器以及与图论的连接
  • 批准号:
    1616584
  • 财政年份:
    2016
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant
AF: Small: Algorithms for Graph Routing, Drawing and Partitioning
AF:小型:图形路由、绘图和分区算法
  • 批准号:
    1318242
  • 财政年份:
    2014
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant
CAREER: Approximation Algorithms and Hardness of Network Optimization Problems
职业:网络优化问题的近似算法和难度
  • 批准号:
    0844872
  • 财政年份:
    2009
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Continuing Grant

相似国自然基金

AF9通过ARRB2-MRGPRB2介导肠固有肥大细胞活化促进重症急性胰腺炎发生MOF的研究
  • 批准号:
    82300739
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
剪接因子U2AF1突变在急性髓系白血病原发耐药中的机制研究
  • 批准号:
    82370157
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
间充质干细胞微粒通过U2AF1负调控pDC活化改善系统性红斑狼疮的机制研究
  • 批准号:
    82302029
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
circPOLB-MYC-U2AF2正反馈环路上调FSCN1促进舌鳞状细胞癌进展的作用研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
tsRNA-14765结合U2AF2抑制巨噬细胞自噬调节铁死亡对动脉粥样硬化的影响及机制研究
  • 批准号:
    82270494
  • 批准年份:
    2022
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342244
  • 财政年份:
    2024
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
  • 批准号:
    2335411
  • 财政年份:
    2024
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
  • 批准号:
    2420942
  • 财政年份:
    2024
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了