Collaborative Research: Towards a Theoretic Foundation for Optimal Deep Graph Learning
协作研究:为最优深度图学习奠定理论基础
基本信息
- 批准号:2134080
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Graph learning has become the cornerstone in numerous real-world applications, such as social media mining, brain connectivity analysis, computational epidemiology and financial fraud detection. Graph neural networks (GNNs for short) represent an important and emerging family of deep graph learning models. By producing a vector representation of graph elements, GNNs have largely streamlined a multitude of graph learning problems. In the vast majority of the existing works, they require a given graph, including its topology, the associated attribute information and labels for (semi-)supervised learning tasks, as part of the input of the corresponding learning model. Despite tremendous progress being made, a theoretical foundation of optimal deep graph learning is still missing, a gap that this project aims to fulfill. The outcomes of this project have broader impacts on education and society. The results of this project enrich the curriculum as well as summer outreach programs at participating institutions, and are further disseminated to the community through a variety of formats to create synergies and advance understandings of different disciplines. This project benefits a variety of high-impact graph learning based applications, including recommendation, power grid, neural science, team science and management, and intelligent transportation systems.This project examines the fundamental role of the input data, including graph topology, attributes and optional labels, in graph neural networks. There are three research thrusts in this project. The first thrust seeks to understand how sensitive the GNNs model is with respect to the input graph; how to quantify the uncertainty of the GNNs model; and how that impacts the generalization performance of the GNNs model. The second thrust develops algorithms to optimize the initially provided graph so as to maximally boost the generalization performance of the given GNNs model. The third thrust develops active learning methods based on deep reinforcement learning with entropy regularization to optimally obtain the additional labels to further improve the GNNs model. This project investigates new theoretic foundations in terms of the sensitivity, the uncertainty and the generalization performance of graph neural networks. It develops new algorithms for learning optimal graphs and active GNNs with better efficacy whose fundamental limits, including sample complexity, generalization error bound, optimality and convergence rate, are well understood.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图学习已成为众多现实世界应用的基石,例如社交媒体挖掘、大脑连接分析、计算流行病学和金融欺诈检测。图神经网络(简称 GNN)代表了一个重要且新兴的深度图学习模型家族。通过生成图元素的向量表示,GNN 在很大程度上简化了许多图学习问题。在绝大多数现有工作中,它们需要给定的图,包括其拓扑、相关属性信息和(半)监督学习任务的标签,作为相应学习模型输入的一部分。尽管取得了巨大进展,但最佳深度图学习的理论基础仍然缺失,而该项目旨在填补这一空白。该项目的成果对教育和社会产生更广泛的影响。该项目的成果丰富了参与机构的课程和暑期外展项目,并通过多种形式进一步向社区传播,以产生协同效应并增进对不同学科的理解。该项目有利于各种基于图学习的高影响力应用,包括推荐、电网、神经科学、团队科学和管理以及智能交通系统。该项目研究了输入数据的基本作用,包括图拓扑、属性和图神经网络中的可选标签。该项目共有三个研究重点。第一个主旨旨在了解 GNN 模型对于输入图的敏感程度;如何量化GNNs模型的不确定性;以及这如何影响 GNN 模型的泛化性能。第二个推动力开发算法来优化最初提供的图,以最大限度地提高给定 GNN 模型的泛化性能。第三个重点是开发基于深度强化学习和熵正则化的主动学习方法,以最佳地获得附加标签,以进一步改进 GNN 模型。该项目研究图神经网络的敏感性、不确定性和泛化性能方面的新理论基础。它开发了用于学习最优图和具有更好功效的主动 GNN 的新算法,其基本限制,包括样本复杂性、泛化误差界限、最优性和收敛速度,都是众所周知的。该奖项反映了 NSF 的法定使命,并通过评估认为值得支持利用基金会的智力优势和更广泛的影响审查标准。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Policy Mirror Descent for Regularized Reinforcement Learning: A Generalized Framework with Linear Convergence
正则化强化学习的策略镜像下降:具有线性收敛的广义框架
- DOI:10.1137/21m1456789
- 发表时间:2023-06
- 期刊:
- 影响因子:3.1
- 作者:Zhan, Wenhao;Cen, Shicong;Huang, Baihe;Chen, Yuxin;Lee, Jason D.;Chi, Yuejie
- 通讯作者:Chi, Yuejie
Is Q-Learning Minimax Optimal? A Tight Sample Complexity Analysis
Q-Learning Minimax 是最优的吗?
- DOI:10.1287/opre.2023.2450
- 发表时间:2024-01
- 期刊:
- 影响因子:2.7
- 作者:Li, Gen;Cai, Changxiao;Chen, Yuxin;Wei, Yuting;Chi, Yuejie
- 通讯作者:Chi, Yuejie
Breaking the sample complexity barrier to regret-optimal model-free reinforcement learning
打破样本复杂性障碍,实现后悔最优无模型强化学习
- DOI:10.1093/imaiai/iaac034
- 发表时间:2023-02
- 期刊:
- 影响因子:0
- 作者:Li, Gen;Shi, Laixi;Chen, Yuxin;Chi, Yuejie
- 通讯作者:Chi, Yuejie
SoteriaFL: A Unified Framework for Private Federated Learning with Communication Compression
SoteriaFL:具有通信压缩功能的私有联合学习的统一框架
- DOI:10.48550/arxiv.2206.09888
- 发表时间:2022-06-20
- 期刊:
- 影响因子:0
- 作者:Zhize Li;Haoyu Zhao;Boyue Li;Yuejie Chi
- 通讯作者:Yuejie Chi
Active Heterogeneous Graph Neural Networks with Per-step Meta-Q-Learning
具有每步 Meta-Q-Learning 的主动异构图神经网络
- DOI:10.1109/icdm54844.2022.00176
- 发表时间:2022-11-01
- 期刊:
- 影响因子:0
- 作者:Yuheng Zhang;Yinglong Xia;Yan Zhu;Yuejie Chi;Lei Ying;H. Tong
- 通讯作者:H. Tong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuejie Chi其他文献
Value-Incentivized Preference Optimization: A Unified Approach to Online and Offline RLHF
价值激励偏好优化:线上线下 RLHF 的统一方法
- DOI:
10.48550/arxiv.2405.19320 - 发表时间:
2024-05-29 - 期刊:
- 影响因子:0
- 作者:
Shicong Cen;Jincheng Mei;Katayoon Goshvadi;Hanjun Dai;Tong Yang;Sherry Yang;D. Schuurmans;Yuejie Chi;Bo Dai - 通讯作者:
Bo Dai
Nearest subspace classification with missing data
缺失数据的最近子空间分类
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Yuejie Chi - 通讯作者:
Yuejie Chi
Super-Resolution Image Reconstruction for High-Density Three-Dimensional Single-Molecule Microscopy
高密度三维单分子显微镜的超分辨率图像重建
- DOI:
10.1109/tci.2017.2699425 - 发表时间:
2017-04-28 - 期刊:
- 影响因子:5.4
- 作者:
Jiaqing Huang;Mingzhai Sun;Jianjie Ma;Yuejie Chi - 通讯作者:
Yuejie Chi
One-bit principal subspace estimation
一位主子空间估计
- DOI:
10.1109/globalsip.2014.7032151 - 发表时间:
2014-12-01 - 期刊:
- 影响因子:0
- 作者:
Yuejie Chi - 通讯作者:
Yuejie Chi
Convergence analysis of accelerated first-order methods for phase retrieval
相位检索加速一阶方法的收敛性分析
- DOI:
10.1057/9781137476050.0014 - 发表时间:
2018 - 期刊:
- 影响因子:4
- 作者:
Huaqing Xiong;Yuejie Chi;Bin Hu;Wei Zhang - 通讯作者:
Wei Zhang
Yuejie Chi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuejie Chi', 18)}}的其他基金
Federated Optimization over Bandwidth-Limited Heterogeneous Networks
带宽受限异构网络的联合优化
- 批准号:
2318441 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
NSF Student Travel Grant for the Fifth Conference on Machine Learning and Systems (MLSys 2022)
第五届机器学习和系统会议 (MLSys 2022) 的 NSF 学生旅费补助金
- 批准号:
2219655 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Efficient Reinforcement Learning
合作研究:CIF:媒介:高效强化学习的统计和算法基础
- 批准号:
2106778 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Taming Nonlinear Inverse Problems: Theory and Algorithms
驯服非线性反问题:理论与算法
- 批准号:
2126634 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CIF: Small: Resource-Efficient Statistical Inference in Networked Environments
CIF:小型:网络环境中资源高效的统计推断
- 批准号:
2007911 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CIF: Medium: Collaborative Research: Theory of Optimization Geometry and Algorithms for Neural Networks
CIF:媒介:协作研究:神经网络优化几何理论和算法
- 批准号:
1901199 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CIF: Medium: Collaborative Research: Nonconvex Optimization for High-Dimensional Signal Estimation: Theory and Fast Algorithms
CIF:中:协作研究:高维信号估计的非凸优化:理论和快速算法
- 批准号:
1806154 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
CAREER: Robust Methods for High-Dimensional Signal Processing under Geometric Constraints
职业:几何约束下高维信号处理的鲁棒方法
- 批准号:
1818571 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
EAGER-DynamicData: Subspace Learning From Binary Sensing
EAGER-DynamicData:从二进制感知中学习子空间
- 批准号:
1833553 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
EAGER-DynamicData: Subspace Learning From Binary Sensing
EAGER-DynamicData:从二进制感知中学习子空间
- 批准号:
1833553 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似国自然基金
Fbxw7缺失促进EGFR突变肺腺癌向肺鳞癌转分化的功能和机制研究
- 批准号:82303039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于颅内外同步静息态脑电与多尺度有向脑网络的致痫区定位研究
- 批准号:82371453
- 批准年份:2023
- 资助金额:65 万元
- 项目类别:面上项目
巨噬细胞来源的CCL1通过NF-κB/GLI1/KLF4通路调控血管平滑肌细胞向肌成纤维细胞的表型转化从而促进川崎病冠脉狭窄病变的机制研究
- 批准号:82370510
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
EAST高极向比压运行模式下芯部与边界兼容机制的数值模拟研究
- 批准号:12375228
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
CXCR5依赖的边缘区B细胞向滤泡树突状细胞呈递外泌体引发心脏移植排斥的研究
- 批准号:82300460
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Multiple Team Membership (MTM) through Technology: A path towards individual and team wellbeing?
协作研究:通过技术实现多重团队成员 (MTM):通往个人和团队福祉的道路?
- 批准号:
2345652 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
- 批准号:
2349934 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
- 批准号:
2349936 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Collaborative Research: Multiple Team Membership (MTM) through Technology: A path towards individual and team wellbeing?
协作研究:通过技术实现多重团队成员 (MTM):通往个人和团队福祉的道路?
- 批准号:
2345651 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
- 批准号:
2411151 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant