Federated Optimization over Bandwidth-Limited Heterogeneous Networks
带宽受限异构网络的联合优化
基本信息
- 批准号:2318441
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Harnessing the power of data collected from a vast amount of geographically distributed and heterogeneous devices, in a manner without moving data around and violating privacy, has great potential in advancing science and technology and improving quality of life. Federated optimization lies at the heart of the practice realizing this vision, encompassing problems such as training large-scale machine learning or artificial intelligence models, delivering insightful data analytics, as well as facilitating decision making under uncertainty, all in distributed manners. There is a significant gap in the algorithmic foundation of federated optimization when interfacing with bandwidth-limited heterogeneous networks, such as internet-of-things, smart healthcare, and edge computing, to meet the unique challenges of taming heterogeneity, privacy, and uncertainty without sacrificing efficiency. This research project will also be tightly integrated with education and workforce developments, through offering new courses, mentoring students at all levels in research projects including underrepresented minorities and women, and disseminating the research outcomes at suitable conferences and workshops. The goal of the research program is to develop a federated optimization framework to learning and decision making by designing communication-efficient, computation-scalable, and privacy-preserving algorithms that converge provably over highly heterogeneous data and computing environments. Leveraging insights from machine learning, optimization theory, signal processing, and differential privacy, the research program offers an entirely new suite of theoretical and algorithmic tools to enable heterogeneity-embracing and privacy-preserving learning and decision making in federated environments under bandwidth constraints, unveiling fundamental trade-offs among computation, communication, privacy, and utility. The research program will gravitate around a semi-decentralized federated setting suitable to meet the diverse needs of bandwidth-limited heterogeneous networks, and focus on developing bandwidth-limited federated optimization algorithms that are efficient, resilient, and private with rigorous performance guarantees for a wide range of problems arising from machine learning, data analysis, and sequential decision making.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
以不移动数据和侵犯隐私的方式利用从大量地理分布的异构设备收集的数据的力量,在推动科学技术和提高生活质量方面具有巨大潜力。联合优化是实现这一愿景的实践的核心,包括训练大规模机器学习或人工智能模型、提供有洞察力的数据分析以及促进不确定性下的决策等问题,所有这些都以分布式方式进行。当与物联网、智能医疗和边缘计算等带宽有限的异构网络接口时,联邦优化的算法基础存在显着差距,无法满足驾驭异构性、隐私和不确定性的独特挑战。牺牲效率。该研究项目还将通过提供新课程、指导各级学生参与研究项目(包括代表性不足的少数群体和妇女)以及在适当的会议和研讨会上传播研究成果,与教育和劳动力发展紧密结合。该研究计划的目标是通过设计通信高效、计算可扩展和隐私保护的算法来开发学习和决策的联合优化框架,这些算法可在高度异构的数据和计算环境中证明收敛。该研究项目利用机器学习、优化理论、信号处理和差异隐私的见解,提供了一套全新的理论和算法工具,以在带宽限制的联邦环境中实现异构性拥抱和隐私保护的学习和决策,揭示了计算、通信、隐私和效用之间的基本权衡。该研究计划将围绕适合满足带宽有限异构网络的多样化需求的半去中心化联邦设置,并专注于开发高效、有弹性和私密性的带宽有限联邦优化算法,并为广泛的应用提供严格的性能保证。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Escaping Saddle Points in Heterogeneous Federated Learning via Distributed SGD with Communication Compression
通过分布式 SGD 和通信压缩摆脱异构联邦学习中的鞍点
- DOI:
- 发表时间:2024-05
- 期刊:
- 影响因子:0
- 作者:Chen, Sijin;Li, Zhize;Chi, Yuejie
- 通讯作者:Chi, Yuejie
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuejie Chi其他文献
One-bit principal subspace estimation
一位主子空间估计
- DOI:
10.1109/globalsip.2014.7032151 - 发表时间:
2014-12-01 - 期刊:
- 影响因子:0
- 作者:
Yuejie Chi - 通讯作者:
Yuejie Chi
Stochastic Approximation and Memory-Limited Subspace Tracking for Poisson Streaming Data
泊松流数据的随机逼近和内存有限子空间跟踪
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:5.4
- 作者:
Liming Wang;Yuejie Chi - 通讯作者:
Yuejie Chi
Implicit Regularization in Nonconvex Statistical Estimation
非凸统计估计中的隐式正则化
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Cong Ma;Kaizheng Wang;Yuejie Chi;Yuxin Chen - 通讯作者:
Yuxin Chen
Value-Incentivized Preference Optimization: A Unified Approach to Online and Offline RLHF
价值激励偏好优化:线上线下 RLHF 的统一方法
- DOI:
10.48550/arxiv.2405.19320 - 发表时间:
2024-05-29 - 期刊:
- 影响因子:0
- 作者:
Shicong Cen;Jincheng Mei;Katayoon Goshvadi;Hanjun Dai;Tong Yang;Sherry Yang;D. Schuurmans;Yuejie Chi;Bo Dai - 通讯作者:
Bo Dai
The Blessing of Heterogeneity in Federated Q-learning: Linear Speedup and Beyond
联邦 Q 学习中异构性的祝福:线性加速及超越
- DOI:
10.48550/arxiv.2305.10697 - 发表时间:
2023-05-18 - 期刊:
- 影响因子:0
- 作者:
Jiin Woo;Gauri Joshi;Yuejie Chi - 通讯作者:
Yuejie Chi
Yuejie Chi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuejie Chi', 18)}}的其他基金
Collaborative Research: Towards a Theoretic Foundation for Optimal Deep Graph Learning
协作研究:为最优深度图学习奠定理论基础
- 批准号:
2134080 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
NSF Student Travel Grant for the Fifth Conference on Machine Learning and Systems (MLSys 2022)
第五届机器学习和系统会议 (MLSys 2022) 的 NSF 学生旅费补助金
- 批准号:
2219655 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Efficient Reinforcement Learning
合作研究:CIF:媒介:高效强化学习的统计和算法基础
- 批准号:
2106778 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Taming Nonlinear Inverse Problems: Theory and Algorithms
驯服非线性反问题:理论与算法
- 批准号:
2126634 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CIF: Small: Resource-Efficient Statistical Inference in Networked Environments
CIF:小型:网络环境中资源高效的统计推断
- 批准号:
2007911 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CIF: Medium: Collaborative Research: Theory of Optimization Geometry and Algorithms for Neural Networks
CIF:媒介:协作研究:神经网络优化几何理论和算法
- 批准号:
1901199 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CIF: Medium: Collaborative Research: Nonconvex Optimization for High-Dimensional Signal Estimation: Theory and Fast Algorithms
CIF:中:协作研究:高维信号估计的非凸优化:理论和快速算法
- 批准号:
1806154 - 财政年份:2018
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
CAREER: Robust Methods for High-Dimensional Signal Processing under Geometric Constraints
职业:几何约束下高维信号处理的鲁棒方法
- 批准号:
1818571 - 财政年份:2018
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
EAGER-DynamicData: Subspace Learning From Binary Sensing
EAGER-DynamicData:从二进制感知中学习子空间
- 批准号:
1833553 - 财政年份:2018
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
EAGER-DynamicData: Subspace Learning From Binary Sensing
EAGER-DynamicData:从二进制感知中学习子空间
- 批准号:
1833553 - 财政年份:2018
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似国自然基金
新型抗菌蛋白CB6-C结构优化及其抗MRSA纳米给药系统研究
- 批准号:32302932
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
极端气候条件下多能源互补系统设计优化的建模方法研究
- 批准号:52306027
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
切削-激光冲击加工耐磨微织构化轴向柱塞泵的摩擦密封性能与效率优化
- 批准号:52305464
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
sp3非晶碳力学和热学性质的优化调控与大块体制备研究
- 批准号:12304015
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于稀疏优化的冗余机器人低能耗及容噪运动规划研究
- 批准号:62363012
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Chrono-exercise is Medicine: Improving Blood Pressure and Vascular Function through Chronotherapy
计时运动是良药:通过计时疗法改善血压和血管功能
- 批准号:
10658613 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Responsive Neurostimulation for Treatment Resistant Depression
反应性神经刺激治疗难治性抑郁症
- 批准号:
10513243 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Development of PPL-138, a Novel Mixed NOP/Mu Partial Agonist for Treatment of CocaineUse Disorder
开发 PPL-138,一种用于治疗可卡因使用障碍的新型混合 NOP/Mu 部分激动剂
- 批准号:
10707176 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Optimizing digital health technologies to improve therapeutic skill use and acquisition
优化数字健康技术以改善治疗技能的使用和获取
- 批准号:
10597202 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
ADAPTIVE MOTIF-BASED CONTROL (AMBC): A FUNDAMENTALLY NEW APPROACH TO AUTOMATED TREATMENT OPTIMIZATION FOR TYPE 1 DIABETES
自适应基序控制 (AMBC):1 型糖尿病自动优化治疗的全新方法
- 批准号:
10684819 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别: