EAGER-DynamicData: Subspace Learning From Binary Sensing
EAGER-DynamicData:从二进制感知中学习子空间
基本信息
- 批准号:1833553
- 负责人:
- 金额:$ 8.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-01-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Decentralized sensing systems play an increasingly critical role in everyday life, including wireless sensor networks, mobile crowd-sensing with internet-of-things, and crowdsourcing with human workers, with applications in network analysis, distributed wideband spectrum sensing, target tracking, environmental monitoring, and advertisement prediction. Despite the promise, however, efficient inference is extremely challenging due to processing large amounts of data at the typically resource-starved sensor nodes. This project develops efficient feature extraction and dimensionality reduction tools for decentralized sensing systems with minimal computation, storage and communication requirements of each sensor node to make sense of the surrounding dynamic environments. Students on this program will develop multi-disciplinary expertise in signal processing, machine learning, optimization, and statistics. New graduate-level courses on high-dimensional data analysis will be developed by the PI at Ohio State University. More specifically, this project offers an integrated approach for subspace learning from bits, where the sampling strategy explicitly accounts for the communication burden by only requesting a single bit from each sensor node. This project opens up opportunities to develop a theory of principal component analysis (or subspace learning) based on binary sensing, where noisy data samples are synthesized into coarse yet high-fidelity binary measurements that are more amenable for communication and inference. The consideration of binary measurements is well-motivated, as in practice, measurements are either mapped to bits from a finite alphabet before computation, or available naturally in the quantized form, such as comparison outcomes from human as sensors; constraints in storage and communication are often expressed in terms of the number of bits rather than the number of real measurements; finally, binary measurements are also more robust against unknown, nonlinear and heterogeneous distortions from different sensors compared with real measurements. Unfortunately, none of the existing subspace learning frameworks is tailored to acquire and process quantized measurements, and will yield highly sub-optimal results if naive quantization is applied. This project addresses the above challenge and highlights a novel interplay between the quantity, precision, and fidelity of measurements in sensing for estimating and tracking a low-dimensional subspace in a dynamic environment. Decentralized and online inference algorithms for subspace learning are developed together with adaptive sensing schemes to speed up convergence.
分散式传感系统在日常生活中发挥着越来越重要的作用,包括无线传感器网络、物联网移动人群感知以及人类工作人员的众包,并在网络分析、分布式宽带频谱传感、目标跟踪、环境监测等领域得到应用,以及广告预测。然而,尽管有这样的承诺,但由于在通常资源匮乏的传感器节点处处理大量数据,有效推理极具挑战性。该项目为分散式传感系统开发高效的特征提取和降维工具,每个传感器节点的计算、存储和通信要求最少,以了解周围的动态环境。该项目的学生将培养信号处理、机器学习、优化和统计学方面的多学科专业知识。俄亥俄州立大学的 PI 将开发有关高维数据分析的新研究生课程。更具体地说,该项目提供了一种从位进行子空间学习的集成方法,其中采样策略通过仅向每个传感器节点请求单个位来明确地考虑通信负担。该项目为开发基于二进制传感的主成分分析(或子空间学习)理论提供了机会,其中噪声数据样本被合成为更适合通信和推理的粗糙但高保真度的二进制测量。对二进制测量的考虑是有充分动机的,因为在实践中,测量要么在计算之前映射到有限字母表中的位,要么以量化形式自然可用,例如人类作为传感器的比较结果;存储和通信方面的限制通常用位数而不是实际测量的数量来表示;最后,与实际测量相比,二进制测量对于来自不同传感器的未知、非线性和异构失真也更加稳健。不幸的是,现有的子空间学习框架都不是专门为获取和处理量化测量而定制的,如果应用朴素量化,将产生高度次优的结果。该项目解决了上述挑战,并强调了在动态环境中估计和跟踪低维子空间的传感测量的数量、精度和保真度之间的新颖相互作用。用于子空间学习的分散式在线推理算法与自适应传感方案一起开发,以加速收敛。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuejie Chi其他文献
One-bit principal subspace estimation
一位主子空间估计
- DOI:
10.1109/globalsip.2014.7032151 - 发表时间:
2014-12-01 - 期刊:
- 影响因子:0
- 作者:
Yuejie Chi - 通讯作者:
Yuejie Chi
Stochastic Approximation and Memory-Limited Subspace Tracking for Poisson Streaming Data
泊松流数据的随机逼近和内存有限子空间跟踪
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:5.4
- 作者:
Liming Wang;Yuejie Chi - 通讯作者:
Yuejie Chi
Implicit Regularization in Nonconvex Statistical Estimation
非凸统计估计中的隐式正则化
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Cong Ma;Kaizheng Wang;Yuejie Chi;Yuxin Chen - 通讯作者:
Yuxin Chen
Value-Incentivized Preference Optimization: A Unified Approach to Online and Offline RLHF
价值激励偏好优化:线上线下 RLHF 的统一方法
- DOI:
10.48550/arxiv.2405.19320 - 发表时间:
2024-05-29 - 期刊:
- 影响因子:0
- 作者:
Shicong Cen;Jincheng Mei;Katayoon Goshvadi;Hanjun Dai;Tong Yang;Sherry Yang;D. Schuurmans;Yuejie Chi;Bo Dai - 通讯作者:
Bo Dai
The Blessing of Heterogeneity in Federated Q-learning: Linear Speedup and Beyond
联邦 Q 学习中异构性的祝福:线性加速及超越
- DOI:
10.48550/arxiv.2305.10697 - 发表时间:
2023-05-18 - 期刊:
- 影响因子:0
- 作者:
Jiin Woo;Gauri Joshi;Yuejie Chi - 通讯作者:
Yuejie Chi
Yuejie Chi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuejie Chi', 18)}}的其他基金
Federated Optimization over Bandwidth-Limited Heterogeneous Networks
带宽受限异构网络的联合优化
- 批准号:
2318441 - 财政年份:2023
- 资助金额:
$ 8.18万 - 项目类别:
Standard Grant
Collaborative Research: Towards a Theoretic Foundation for Optimal Deep Graph Learning
协作研究:为最优深度图学习奠定理论基础
- 批准号:
2134080 - 财政年份:2022
- 资助金额:
$ 8.18万 - 项目类别:
Continuing Grant
NSF Student Travel Grant for the Fifth Conference on Machine Learning and Systems (MLSys 2022)
第五届机器学习和系统会议 (MLSys 2022) 的 NSF 学生旅费补助金
- 批准号:
2219655 - 财政年份:2022
- 资助金额:
$ 8.18万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Efficient Reinforcement Learning
合作研究:CIF:媒介:高效强化学习的统计和算法基础
- 批准号:
2106778 - 财政年份:2021
- 资助金额:
$ 8.18万 - 项目类别:
Continuing Grant
Taming Nonlinear Inverse Problems: Theory and Algorithms
驯服非线性反问题:理论与算法
- 批准号:
2126634 - 财政年份:2021
- 资助金额:
$ 8.18万 - 项目类别:
Standard Grant
CIF: Small: Resource-Efficient Statistical Inference in Networked Environments
CIF:小型:网络环境中资源高效的统计推断
- 批准号:
2007911 - 财政年份:2020
- 资助金额:
$ 8.18万 - 项目类别:
Standard Grant
CIF: Medium: Collaborative Research: Theory of Optimization Geometry and Algorithms for Neural Networks
CIF:媒介:协作研究:神经网络优化几何理论和算法
- 批准号:
1901199 - 财政年份:2019
- 资助金额:
$ 8.18万 - 项目类别:
Standard Grant
CIF: Medium: Collaborative Research: Nonconvex Optimization for High-Dimensional Signal Estimation: Theory and Fast Algorithms
CIF:中:协作研究:高维信号估计的非凸优化:理论和快速算法
- 批准号:
1806154 - 财政年份:2018
- 资助金额:
$ 8.18万 - 项目类别:
Continuing Grant
CAREER: Robust Methods for High-Dimensional Signal Processing under Geometric Constraints
职业:几何约束下高维信号处理的鲁棒方法
- 批准号:
1818571 - 财政年份:2018
- 资助金额:
$ 8.18万 - 项目类别:
Standard Grant
CIF: Small: Inverse Methods for Parametric Mixture Models
CIF:小:参数混合模型的逆方法
- 批准号:
1826519 - 财政年份:2018
- 资助金额:
$ 8.18万 - 项目类别:
Standard Grant
相似国自然基金
面向数据中心动态混合流量的网络传输优化关键技术研究
- 批准号:62302472
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态宽度与深度学习的多源异构数据下高山峡谷区链生地质灾害智能识别研究
- 批准号:42371356
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
基于数据挖掘和强化学习的动态随机车辆路径优化问题研究
- 批准号:72301109
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于数据同化和动态模型库的海洋核动力装置故障诊断与自适应控制研究
- 批准号:12305185
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自适应动态规划的非线性系统数据驱动最优输出调节
- 批准号:62373090
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: EAGER-DynamicData: Machine Intelligence for Dynamic Data-Driven Morphing of Nodal Demand in Smart Energy Systems
合作研究:EAGER-DynamicData:智能能源系统中节点需求动态数据驱动变形的机器智能
- 批准号:
1462393 - 财政年份:2015
- 资助金额:
$ 8.18万 - 项目类别:
Standard Grant
EAGER-DynamicData: Collaborative: Exploiting the Dynamically Architectural Configurability for Compressed Sensing
EAGER-DynamicData:协作:利用压缩感知的动态架构可配置性
- 批准号:
1462473 - 财政年份:2015
- 资助金额:
$ 8.18万 - 项目类别:
Standard Grant
EAGER-DynamicData: Judicious Censoring, Random Sketching, and Efficient Validate for Learning Patterns from Dynamically-Changing and Large-Scale Data Sets
EAGER-DynamicData:明智的审查、随机草图和高效验证,用于从动态变化的大规模数据集中学习模式
- 批准号:
1500713 - 财政年份:2015
- 资助金额:
$ 8.18万 - 项目类别:
Standard Grant
EAGER-DynamicData: Collaborative Research: Data-driven morphing of parsimonious models for the description of transient dynamics in complex systems
EAGER-DynamicData:协作研究:数据驱动的简约模型变形,用于描述复杂系统中的瞬态动力学
- 批准号:
1462241 - 财政年份:2015
- 资助金额:
$ 8.18万 - 项目类别:
Standard Grant
EAGER-DynamicData: Dynamic Data-Driven Avionics Systems for Flight Decision Support in Emergency Conditions
EAGER-DynamicData:动态数据驱动的航空电子系统,用于紧急情况下的飞行决策支持
- 批准号:
1462342 - 财政年份:2015
- 资助金额:
$ 8.18万 - 项目类别:
Standard Grant