The Asymptotic Solutions of Dispersive and Hyperbolic Equations
色散方程和双曲方程的渐近解
基本信息
- 批准号:2205931
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project is in the field of scattering theory of general wave equations. The aim is to characterize the large-time behavior of solutions of complex-type nonlinear equations in mathematical physics, which describe wave propagation in quantum systems and nonlinear optics models, among others. Finding the possible asymptotic states of such systems is critical to both qualitative and quantitative understanding of the physical phenomena and to applications. For example, the fundamental question in quantum mechanics of finding the breakup components of a molecule that is perturbed by a laser pulse is of this type. Similarly, the energy loss of light pulses moving a long distance in an optical fibre and the effects of time dependent noise on the stability of quantum and optical devices are examples.The aim of this project is to find the asymptotic behavior and other properties of the solutions for a general class of nonlinear Schrödinger equations. A key part of the project is to find all possible asymptotic states. This is an exceedingly difficult task for nonlinear equations, and results of general nature are scarce. The complexity of the equations considered necessitates different analytical, computational, and numerical tools. A combination of modern functional analytic methods and physical insights will be developed. In the case of spherical symmetric initial data and perturbation term, which can also depend on time and space variables, the goal is to show that the solutions break into a free wave and a (weakly) localized part and to derive the properties of the localized part. The project includes the analytic and numerical study of kinetic equations with multiple ergodic components.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目在通用波方程的散射理论领域。目的是表征数学物理学中复杂型非线性方程的解决方案的大型行为,这些解决方案描述了量子系统和非线性光学模型中的波传播等。找到这种系统的可能不对称状态对于对物理现象和应用的定性和定量理解至关重要。例如,在量子力学中找到被激光脉冲扰动的分子的分解成分的基本问题是这种类型的。同样,光脉冲的能量损失在光纤中移动了很长的距离,而时间依赖噪声对量子和光学设备稳定性的影响就是示例。该项目的目的是为一般类别的非线性schrödinger方程寻找解决方案的不对称行为和其他特性。该项目的关键部分是找到所有可能的不对称状态。对于非线性方程来说,这是一项非常困难的任务,一般性质的结果很少。方程式被认为是必要的分析,计算和数值工具的复杂性。将开发现代功能分析方法和物理见解的结合。在球形对称的初始数据和扰动项的情况下,这也可能取决于时间和空间变量,目标是证明该解决方案分为自由波和(弱)局部零件,并得出本地化部分的属性。该项目包括对具有多个Ergodic成分的动力学方程的分析和数值研究。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响审查标准来评估被认为是宝贵的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Avraham Soffer其他文献
Avraham Soffer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Avraham Soffer', 18)}}的其他基金
Linear and Nonlinear Dispersive Waves: Solitons, Nonlinear Resonances and Spectral Theory
线性和非线性色散波:孤子、非线性共振和谱理论
- 批准号:
1600749 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Soliton Dynamics and Scattering Theory
孤子动力学和散射理论
- 批准号:
1201394 - 财政年份:2012
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Soliton Dynamics and Scattering Theory
孤子动力学和散射理论
- 批准号:
0903651 - 财政年份:2009
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Scattering Theory for Linear and Nonlinear Waves and Soliton Dynamics
线性和非线性波的散射理论以及孤子动力学
- 批准号:
0501043 - 财政年份:2005
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Linear and Nonlinear Multichannel Scattering
线性和非线性多通道散射
- 批准号:
0100490 - 财政年份:2001
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Mathematical Scienecs: Linear and Nonlinear Waves
数学科学:线性波和非线性波
- 批准号:
9401777 - 财政年份:1994
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Mathematical Sciences: Phase-space Analysis and Scattering Theory of Shcrodinger Type Hamiltonians
数学科学:相空间分析和薛定谔型哈密顿量的散射理论
- 批准号:
8905772 - 财政年份:1989
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
相似国自然基金
从定性到定量:基于自然解决方案的长江口湿地后生态工程评价
- 批准号:32371621
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于超声单模态影像融合实时规划技术实现肝脏肿瘤热消融最优穿刺路径解决方案
- 批准号:82371986
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
能力培育项目+FAPESP+基于自然解决方案的城市应对气候变化的韧性和适应性研究
- 批准号:42261144742
- 批准年份:2022
- 资助金额:60.00 万元
- 项目类别:国际(地区)合作与交流项目
数智驱动下高科技企业场景式解决方案研究:理论模型、构建机制及市场响应性
- 批准号:72272082
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
激光加速束斑异型化解决方案的研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Asymptotic behavior of global in time solutions to the viscous conservation laws
粘性守恒定律全局时间解的渐近行为
- 批准号:
22K03371 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the asymptotic problem appearing in dynamical systems and surface evolution equations by the method of viscosity solutions
粘性解法研究动力系统和表面演化方程的渐近问题
- 批准号:
19K03580 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Asymptotic behavior of solutions to hyperbolic and dispersive equations with damping terms
具有阻尼项的双曲和色散方程解的渐近行为
- 批准号:
19K03596 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Asymptotic behavior of solutions of dissipative hyperbolic equations
耗散双曲方程解的渐近行为
- 批准号:
17K05338 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Existence of solutions of free boundary problems of two-phase fluids and their asymptotic behaviors
两相流体自由边界问题解的存在性及其渐近行为
- 批准号:
17K17804 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Young Scientists (B)