Scattering Theory for Linear and Nonlinear Waves and Soliton Dynamics
线性和非线性波的散射理论以及孤子动力学
基本信息
- 批准号:0501043
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Scattering Theory for Linear and Nonlinear Waves and Soliton Dynamics.Avraham SofferAbstract:The analysis of nonlinear evolution equations is the goal of this work. Nonlinear evolution equations which describe wave propagation are of fundamental importance in many fields of science and engineering. The nonlinear Schroedinger equation appears naturally in the study of many body quantum system, nonlinear optics and more. Mathematically, one is interested in finding the large time behavior of solutions for all initial data in a given class of functions, typically a Sobolev space. The previous works on evolution equations which have many channels of scattering , by the Investigator and collaborators, have led to major new tools which are now applied to different types of equations.Under suitable assumptions on the class of allowed nonlinearities one can now state the general conjecture about the large time behavior of the nonlinear Schroedinger equation. One expects that for all initial data in the standard Sobolev space, the asymptotic behavior will be given by a combination of independently moving solitons and a free wave. While this result is beyond our current capabilities, substantial progress has been made in the last few years, by the Investigator his collaborators and others, culminating in the proof of the above conjecture for small perturbations of widely separated solitons.It is planned to develop new techniques to deal for the first time with large perturbations of soliton states. This effort will draw on many and diverse fields of mathematics, including harmonic analysis, phase space methods of scattering theory, nonlinear analysis and more. The advances in this direction are expected to play an important role in our understanding of one of the most important nonlinear dynamical systems of wave interactions. It applies to Bose Einstein condensates in solid state physics, optical solitons in fibers and other optical devices, in the study of nonperturbative solutions to Quantum Field Theory and more. It also inspires and will inspire more new directions of research in the mathematical analysis of dispersive wave equations, and its relation to harmonic and spectral analysis.
线性和非线性波的散射理论以及孤子动力学。Avraham Soffer 摘要:非线性演化方程的分析是这项工作的目标。描述波传播的非线性演化方程在科学和工程的许多领域中具有根本重要性。 非线性薛定谔方程自然出现在多体量子系统、非线性光学等的研究中。从数学上讲,人们感兴趣的是寻找给定一类函数(通常是 Sobolev 空间)中所有初始数据的解的大时间行为。研究者和合作者之前对具有许多散射通道的演化方程的研究已经产生了主要的新工具,这些工具现在应用于不同类型的方程。在对允许的非线性类别的适当假设下,现在可以陈述一般性关于非线性薛定谔方程的大时间行为的猜想。人们预计,对于标准索博列夫空间中的所有初始数据,渐近行为将由独立移动的孤子和自由波的组合给出。虽然这一结果超出了我们目前的能力,但研究人员、他的合作者和其他人在过去几年中取得了实质性进展,最终证明了上述关于广泛分离的孤子的小扰动的猜想。计划开发新的首次处理孤子态大扰动的技术。这项工作将利用许多不同的数学领域,包括谐波分析、散射理论的相空间方法、非线性分析等。这一方向的进展预计将在我们理解波相互作用最重要的非线性动力系统之一方面发挥重要作用。它适用于固态物理中的玻色爱因斯坦凝聚、光纤和其他光学设备中的光孤子、量子场论非微扰解的研究等。它还激发并将激发色散波动方程的数学分析及其与谐波和谱分析的关系方面更多新的研究方向。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Avraham Soffer其他文献
Avraham Soffer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Avraham Soffer', 18)}}的其他基金
The Asymptotic Solutions of Dispersive and Hyperbolic Equations
色散方程和双曲方程的渐近解
- 批准号:
2205931 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Linear and Nonlinear Dispersive Waves: Solitons, Nonlinear Resonances and Spectral Theory
线性和非线性色散波:孤子、非线性共振和谱理论
- 批准号:
1600749 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
Linear and Nonlinear Multichannel Scattering
线性和非线性多通道散射
- 批准号:
0100490 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Scienecs: Linear and Nonlinear Waves
数学科学:线性波和非线性波
- 批准号:
9401777 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Phase-space Analysis and Scattering Theory of Shcrodinger Type Hamiltonians
数学科学:相空间分析和薛定谔型哈密顿量的散射理论
- 批准号:
8905772 - 财政年份:1989
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
非线性高阶逆散射理论
- 批准号:42374149
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
具Hardy与库伦位势的色散方程的动力学行为研究
- 批准号:11901041
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
超强激光场中非线性康普顿散射新性质的理论研究
- 批准号:11805181
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于散射理论面向储层的叠前地震波形反演理论与方法
- 批准号:41774131
- 批准年份:2017
- 资助金额:69.0 万元
- 项目类别:面上项目
带正则位势的非线性 Schrodinger 方程的散射理论
- 批准号:11701141
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
New develpment of spectral and inverse scattering theory-Non linear problems and continuum limit
光谱与逆散射理论的新进展-非线性问题与连续极限
- 批准号:
20K03667 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Scattering theory for linear and nonlinear Schrodinger equations
线性和非线性薛定谔方程的散射理论
- 批准号:
20540169 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Comprehensive training in Neuroimaging Fundamentals and Applications
神经影像学基础和应用综合培训
- 批准号:
7488878 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Comprehensive training in Neuroimaging Fundamentals and Applications
神经影像学基础和应用综合培训
- 批准号:
7294251 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Scattering and Inverse Scattering for Linear and Nonlinear Wave Propagations
线性和非线性波传播的散射和逆散射
- 批准号:
16540204 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)