Linear and Nonlinear Dispersive Waves: Solitons, Nonlinear Resonances and Spectral Theory
线性和非线性色散波:孤子、非线性共振和谱理论
基本信息
- 批准号:1600749
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research in this project is focused on the analysis of wave dynamics. Wave propagation and other properties are the backbone of modern Science and Technology. Quantum waves control the nano world, electromagnetic waves manifest as light, lasers, heat, and are responsible for chemical reactions and electronic devices. Gravity theory is described by Einstein wave equation as well. The analysis of complex systems via such wave equations is extremely difficult, and even super fast computers cannot do the job. Therefore, deeper understanding of the equations provides new tools for the relevant features of the solutions. At the same time, the acquired knowledge opens new directions of research in mathematics. In this proposal the behavior of special solutions, called coherent states, of fundamental equations of mathematical physics are studied. In particular, focus is given to the effect of disturbances of such solutions over long periods of time, in an effort to control the stability, life time and evolution of such solutions. The cases mostly considered are solutions called solitons- which are clumps of self trapped waves in some small domain. The solitons formed by laser beams going through an optical fiber play a key role in fast communication and other future planned optical devices.Soliton dynamics of the nonlinear Schroedinger equation will be studied. While the complete understanding of the solutions of such equations for all initial data seems remote, a novel direction is proposed: The interaction of solitons with radiation, with large potential terms, and with each other, will be analyzed by identifying processes which are adiabatic in time. Relevant adiabatic dispersive theory will be used, previously developed by the PI and new planned methods. It is expected to complete a gap in our understanding of a fundamental aspect of nonlinear scattering: interaction process of a soliton with large perturbation. The study of nonhomogeneous nonlinearities of the long range type, initiated by the PI, which are fundamental to many nonlinear scattering problems (e.g. Kink scattering), uncovered a new, subtle resonance phenomena: the unbound growth of some Invariant Sobolev norm of such systems. It is the aim of the research to understand the implications of these new processes. Dispersive estimates for linear equations play a central role in spectral and scattering theory. The PI's recent and future work is to develop an alternative, abstract theory. By avoiding the need to study the explicit (eigen) solutions or fundamental solutions of the linear equation, one can expand the dispersive theory to new classes of problems, including dynamics on manifolds.
该项目的研究重点是波浪动力学分析。波传播和其他特性是现代科学技术的支柱。量子波控制纳米世界,电磁波表现为光、激光、热,负责化学反应和电子设备。引力理论也是由爱因斯坦波动方程描述的。通过这种波动方程来分析复杂系统是极其困难的,即使是超高速计算机也无法完成这项工作。因此,对方程的更深入理解为解决方案的相关特征提供了新的工具。同时,所获得的知识开辟了数学研究的新方向。在该提案中,研究了数学物理基本方程的特殊解(称为相干态)的行为。特别是,重点关注此类解决方案在较长时间内的扰动影响,以努力控制此类解决方案的稳定性、寿命和演化。最常考虑的情况是称为孤子的解决方案,它是某些小域中的自陷波团。激光束穿过光纤形成的孤子在快速通信和其他未来计划的光学器件中发挥着关键作用。将研究非线性薛定谔方程的孤子动力学。虽然完全理解所有初始数据的此类方程的解似乎很遥远,但提出了一个新的方向:孤子与辐射、大势项以及彼此之间的相互作用将通过识别绝热过程来分析。时间。将使用 PI 先前开发的相关绝热色散理论和新计划的方法。它有望填补我们对非线性散射基本方面理解的空白:孤子与大扰动的相互作用过程。由 PI 发起的长程非齐次非线性研究是许多非线性散射问题(例如扭结散射)的基础,揭示了一种新的、微妙的共振现象:此类系统的某些不变索博列夫范数的无约束增长。研究的目的是了解这些新过程的影响。线性方程的色散估计在光谱和散射理论中发挥着核心作用。 PI 最近和未来的工作是开发一种替代的抽象理论。通过避免研究线性方程的显式(特征)解或基本解,我们可以将色散理论扩展到新的一类问题,包括流形动力学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Avraham Soffer其他文献
Avraham Soffer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Avraham Soffer', 18)}}的其他基金
The Asymptotic Solutions of Dispersive and Hyperbolic Equations
色散方程和双曲方程的渐近解
- 批准号:
2205931 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Soliton Dynamics and Scattering Theory
孤子动力学和散射理论
- 批准号:
1201394 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Soliton Dynamics and Scattering Theory
孤子动力学和散射理论
- 批准号:
0903651 - 财政年份:2009
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Scattering Theory for Linear and Nonlinear Waves and Soliton Dynamics
线性和非线性波的散射理论以及孤子动力学
- 批准号:
0501043 - 财政年份:2005
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Linear and Nonlinear Multichannel Scattering
线性和非线性多通道散射
- 批准号:
0100490 - 财政年份:2001
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Mathematical Scienecs: Linear and Nonlinear Waves
数学科学:线性波和非线性波
- 批准号:
9401777 - 财政年份:1994
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Mathematical Sciences: Phase-space Analysis and Scattering Theory of Shcrodinger Type Hamiltonians
数学科学:相空间分析和薛定谔型哈密顿量的散射理论
- 批准号:
8905772 - 财政年份:1989
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
相似国自然基金
考虑静风效应和振幅影响的超大跨度悬索桥非线性颤振演化机理研究
- 批准号:52378537
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
多晶钙钛矿X射线探测器非线性电流响应机理与抑制研究
- 批准号:62304236
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非线性模型结构性误差的动力学订正方法研究
- 批准号:42375059
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
复杂网络上非线性动力系统临界点的严格边界
- 批准号:12305038
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
复杂非线性系统的预设性能鲁棒输出调节问题及其应用
- 批准号:62373156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Linear and nonlinear problems in dispersive Partial Differential Equations
色散偏微分方程中的线性和非线性问题
- 批准号:
1600942 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Study of the structure of solutions to variational problems, optimization problems, linear and nonlinear partial differential equations
研究变分问题、优化问题、线性和非线性偏微分方程的解结构
- 批准号:
18540191 - 财政年份:2006
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dispersive Phenomena in Linear and Nonlinear Partial Differential Equations
线性和非线性偏微分方程中的色散现象
- 批准号:
0301122 - 财政年份:2003
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
CHARACTERISTIC BOUNDARY VALUE PROBLEM FOR LINEAR AND NONLINEAR SYMMETRIC HYPERBOLIC SYSTEMS
线性和非线性对称双曲线系统的特征边值问题
- 批准号:
09440061 - 财政年份:1997
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The comprehensive study of differential equations
微分方程综合研究
- 批准号:
62302004 - 财政年份:1987
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)