Collaborative Research: A Hierarchical Multidimensional Network-based Approach for Multi-Competitor Product Design
协作研究:基于分层多维网络的多竞争对手产品设计方法
基本信息
- 批准号:2203080
- 负责人:
- 金额:$ 15.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this research is to investigate what product customers consider and what they eventually purchase using a hierarchical, multidimensional network-based design approach. Motivated by the need to model socio-technical interactions in engineering design, this research combines design theory with network science to explore three interrelated topics: 1) two-stage multidimensional network models for customer preference modeling that consider product associations and social influence; 2) dynamic network models for predicting the impact of multi-competitor strategic decisions, and 3) knowledge transfer to demonstrate generalizability and creation of shared data resources to benefit research community. This project will advance design theories of complex systems and develop quantitative methods for modeling socio-technical interactions in engineering design. Integrated with enterprise-driven design, the methods developed will enhance US industry’s competitiveness within changing markets. The test cases include a primary case study on the design of electric vehicles and small SUVs and a secondary case study on the design of household products. The project will also foster student training in data science, network science and Artificial Intelligence, with particular emphasis on the participation of underrepresented groups, females, and undergraduates.The intellectual merit of this research is manifested in four aspects. First, the hierarchical network model studies customers’ consideration and choice as distinct, but integrated, behaviors. It identifies distinctive driving factors underlying the consideration and choice stages. Second, this research overcomes the practical challenges of missing data on customers' social networks. The solution relies on an innovative approach to assess how individuals’ preferences are influenced by their own egocentric social contacts through a synergistic integration of autologistic actor attribute model (ALAAM) with the Multidimensional Customer-Product Network (MCPN) framework. Third, using temporal Exponential Random Graph Model (t-ERGM), the dynamic network modeling approach will allow the prediction of future market competition considering the present competition structure and multi-competitor design decisions. Finally, a crowdsourcing-based data collection platform integrating online product data and reviews will be developed for eliciting customer preferences in multi-stage decision making.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究的目的是调查客户考虑的产品以及他们有时使用基于多维网络的设计方法购买的产品。由于需要在工程设计中建模社会技术互动的需要,该研究将设计理论与网络科学结合在一起,探讨了三个相互关联的主题:1)两阶段的多维网络模型,用于客户偏好模型,以考虑产品关联和社会影响; 2)动态网络模型,用于预测多竞争者战略决策的影响,以及3)知识转移,以证明可普遍性和创建共享数据资源以使研究社区受益。该项目将推动设计复杂系统的设计理论,并开发用于建模工程设计中社会技术互动的定量方法。与企业驱动的设计集成在一起,开发的方法将增强美国行业在不断变化的市场中的竞争力。测试案例包括有关电动汽车设计和小型SUV设计的主要案例研究,以及有关家用产品设计的次要案例研究。该项目还将培养学生在数据科学,网络科学和人工智能方面的培训,特别着重于代表性不足的群体,女性和本科生的参与。这项研究的知识分子在四个方面表现出来。首先,分层网络模型将客户的考虑和选择视为不同但综合的行为。它确定了考虑因素和选择阶段的独特驱动因素。其次,这项研究克服了丢失客户社交网络数据的实际挑战。该解决方案依赖于一种创新的方法来评估个人的偏好如何通过自动化行为者属性模型(ALAAM)与多维客户产品(MCPN)框架的自动化行为者属性模型(ALAAM)的协同整合来影响自己的以自我为中心的社会接触。第三,使用临时指数随机图模型(T-ERGM),动态网络建模方法将允许考虑当前的竞争结构和多竞争者设计决策的未来市场竞争。最后,将开发基于众包的数据收集平台集成在线产品数据和评论,以引起多阶段决策中的客户偏好。该奖项反映了NSF的法定任务,并通过使用该基金会的智力优点和更广泛的影响来评估NSF的法定任务。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Graph Neural Network Approach for Product Relationship Prediction
- DOI:10.1115/detc2021-69462
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Faez Ahmed;Yaxin Cui;Yan Fu;Wei Chen
- 通讯作者:Faez Ahmed;Yaxin Cui;Yan Fu;Wei Chen
Information Retrieval and Survey Design For Two-Stage Customer Preference Modeling
两阶段客户偏好建模的信息检索和调查设计
- DOI:10.1017/dsd.2022.000
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Y. Xiao, Y. Cui
- 通讯作者:Y. Xiao, Y. Cui
Bayesian analysis of social influence
- DOI:10.1111/rssa.12844
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:J. Koskinen;G. Daraganova
- 通讯作者:J. Koskinen;G. Daraganova
A Weighted Statistical Network Modeling Approach to Product Competition Analysis
- DOI:10.1155/2022/9417869
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Yaxin Cui;Faez Ahmed;Zhenghui Sha;Lijun Wang;Yan Fu;N. Contractor;Wei Chen
- 通讯作者:Yaxin Cui;Faez Ahmed;Zhenghui Sha;Lijun Wang;Yan Fu;N. Contractor;Wei Chen
A network-based discrete choice model for decision-based design
用于决策设计的基于网络的离散选择模型
- DOI:10.1017/dsj.2023.4
- 发表时间:2023
- 期刊:
- 影响因子:2.4
- 作者:Sha, Zhenghui;Cui, Yaxin;Xiao, Yinshuang;Stathopoulos, Amanda;Contractor, Noshir;Fu, Yan;Chen, Wei
- 通讯作者:Chen, Wei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhenghui Sha其他文献
Multi-Robot Path Planning for Cooperative 3D Printing
协作 3D 打印的多机器人路径规划
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Saivipulteja Elagandula;Laxmi Poudel;Zhenghui Sha;Wenchao Zhou - 通讯作者:
Wenchao Zhou
Print As a Dance Duet: Communication Strategies for Collision-Free Arm-Arm Coordination in Cooperative 3D Printing
打印如舞蹈二重奏:协作 3D 打印中无碰撞手臂协调的通信策略
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Ronnie F. P. Stone;Wenchao Zhou;E. Akleman;Vinayak R. Krishnamurthy;Zhenghui Sha - 通讯作者:
Zhenghui Sha
Modeling product co-consideration relations: A comparative study of two network models
产品共考虑关系建模:两种网络模型的比较研究
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Zhenghui Sha;Mingxian Wang;Yun Huang;N. Contractor;Yan Fu;Wei Chen - 通讯作者:
Wei Chen
Predicting product co-consideration and market competitions for technology-driven product design: a network-based approach
预测技术驱动的产品设计的产品共同考虑和市场竞争:基于网络的方法
- DOI:
10.1017/dsj.2018.4 - 发表时间:
2018 - 期刊:
- 影响因子:2.4
- 作者:
Mingxian Wang;Zhenghui Sha;Yun Huang;N. Contractor;Yan Fu;Wei Chen - 通讯作者:
Wei Chen
The Second Decade of the Materials Genome Initiative
材料基因组计划的第二个十年
- DOI:
10.1007/s11837-021-05008-y - 发表时间:
2021 - 期刊:
- 影响因子:2.6
- 作者:
Xingang Li;Charles Xie;Zhenghui Sha - 通讯作者:
Zhenghui Sha
Zhenghui Sha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhenghui Sha', 18)}}的其他基金
Collaborative Research: Design Decisions under Competition at the Edge of Bounded Rationality: Quantification, Models, and Experiments
协作研究:有限理性边缘竞争下的设计决策:量化、模型和实验
- 批准号:
2321463 - 财政年份:2023
- 资助金额:
$ 15.44万 - 项目类别:
Standard Grant
Educating Generative Designers in Engineering
教育工程领域的生成设计师
- 批准号:
2207408 - 财政年份:2022
- 资助金额:
$ 15.44万 - 项目类别:
Standard Grant
Collaborative Research: A Hierarchical Multidimensional Network-based Approach for Multi-Competitor Product Design
协作研究:基于分层多维网络的多竞争对手产品设计方法
- 批准号:
2005665 - 财政年份:2020
- 资助金额:
$ 15.44万 - 项目类别:
Standard Grant
Educating Generative Designers in Engineering
教育工程领域的生成设计师
- 批准号:
1918847 - 财政年份:2019
- 资助金额:
$ 15.44万 - 项目类别:
Standard Grant
EAGER: A Fine-Grained Data-Driven Approach to Studying Sequential Decision-Making in Engineering Systems Design
EAGER:一种研究工程系统设计中顺序决策的细粒度数据驱动方法
- 批准号:
1842588 - 财政年份:2018
- 资助金额:
$ 15.44万 - 项目类别:
Standard Grant
相似国自然基金
二步分层李群上的Hardy不等式及相关问题研究
- 批准号:12301145
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于超声影像-蛋白质组学的乳腺癌腋窝淋巴结分层评估研究
- 批准号:82371984
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
梯度分层结构水凝胶超细纤维膜的可控成型机制及其对慢性伤口的促愈性能研究
- 批准号:52303003
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
城镇掺氢燃气管道掺混/分层传质机理及高精度随动流量掺氢调控机制研究
- 批准号:52372311
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
大数据技术融合同行评议的科技人才分类分层评价模型研究
- 批准号:62377043
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 15.44万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 15.44万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:RUI:使用分层纳米结构动力系统进行二维波浪工程
- 批准号:
2337506 - 财政年份:2024
- 资助金额:
$ 15.44万 - 项目类别:
Standard Grant
Collaborative Research: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:使用分层纳米结构动力系统进行二维波动工程
- 批准号:
2337507 - 财政年份:2024
- 资助金额:
$ 15.44万 - 项目类别:
Standard Grant
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
- 批准号:
2332442 - 财政年份:2023
- 资助金额:
$ 15.44万 - 项目类别:
Standard Grant