Scalar curvature and geometric variational problems

标量曲率和几何变分问题

基本信息

  • 批准号:
    2303624
  • 负责人:
  • 金额:
    $ 38.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Curvature describes local bending of a space, and is used to distinguish how two shapes are different. This project concerns a particular notion of curvature, called the scalar curvature. Scalar curvature determines the amount by which the volume of a small geodesic ball in a Riemannian manifold deviates from that of the standard ball in Euclidean space. Curvature arises throughout the natural sciences, and particularly in general relativity, where scalar curvature is the Lagrangian density of the Einstein-Hilbert action. A natural yet deep question is to understand the effects of scalar curvature on the global properties of a manifold. In particular, the project will focus on geometric variational problems, including minimal surfaces and soap bubbles. Minimal surfaces arise as the mathematical model of a number of interfaces in nature. In general relativity, minimal surfaces occur as “apparent horizons” of black holes; soap films and capillary interfaces also provide examples of minimal surfaces. Some key questions include the existence, regularity and topology of minimal surfaces. These two aspects of the research are deeply related, and will advance our understanding of the shape of nature. The PI will integrate this research with a variety of knowledge-disseminating activities that include organizing seminars, conferences, mini-courses, and reading groups, and giving public lectures. The proposed research concerns a range of topics in differential geometry, geometric measure theory and partial differential equations. Particularly, the PI would like to focus on the following four main topics. The first topic is the investigation of the obstruction problem for manifolds with positive scalar curvature, including the well-known `K(pi, 1) conjecture’. The second topic is to further understand the geometric comparison theorem for scalar curvature lower bound using Riemannian polyhedra. Minimal surface and soap bubbles are key technical tools for such problems. The third topic is to further investigate the stable Bernstein problem for minimal surfaces in R^n. The fourth topic is to further study the moduli space of positive scalar curvature metrics on 3-manifolds (with or without boundary). Understanding such questions has potential applications in 4-dimensional general relativity and in topology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
曲率描述了空间的局部弯曲,用于区分两个形状的不同之处,该项目涉及一种特殊的曲率概念,称为标量曲率,它决定了黎曼中小测地线球的体积。流形与欧几里得空间中标准球的流形的偏差贯穿整个自然科学,特别是在标量的广义相对论中。曲率是爱因斯坦-希尔伯特作用的拉格朗日密度,一个自然而深刻的问题是了解标量曲率对流形全局属性的影响,该项目将重点关注几何变分问题,包括最小曲面和肥皂。最小表面作为自然界中许多界面的数学模型而出现,黑洞的“视界”也提供了。一些关键问题包括最小曲面的存在性、规律性和拓扑结构,这两个方面的研究密切相关,并将促进我们对自然形状的理解。知识传播活动,包括组织研讨会、会议、迷你课程和阅读小组,以及举办公开讲座。拟议的研究涉及微分几何、几何测度论和偏微分方程等一系列主题。重点关注以下方面四个主要主题。第一个主题是研究具有正标量曲率的流形的阻塞问题,包括著名的“K(pi,1)猜想”。第二个主题是进一步理解标量曲率的几何比较定理。使用黎曼多面体的下界是解决此类问题的关键技术工具。第三个主题是进一步研究 R^n 中最小曲面的稳定伯恩斯坦问题。旨在进一步研究 3 流形(有边界或无边界)上的正标量曲率度量的模空间,了解此类问题在 4 维广义相对论和拓扑中具有潜在应用。该奖项反映了 NSF 的法定使命,并被认为是值得的。通过使用基金会的智力优势和更广泛的影响审查标准进行评估来获得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chao Li其他文献

CEA levels predict tumor response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer
CEA水平预测局部晚期直肠癌对新辅助放化疗的肿瘤反应
  • DOI:
    10.1007/s10330-022-0548-8
  • 发表时间:
    2022-08-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lili Shen;Chao Li;Jingwen Wang;J. Fan;Ji Zhu
  • 通讯作者:
    Ji Zhu
Heegner points at Eisenstein primes and twists of elliptic curves
海格纳指出爱森斯坦素数和椭圆曲线的扭曲
  • DOI:
  • 发表时间:
    2016-09-21
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Kříž;Chao Li
  • 通讯作者:
    Chao Li
Characterizing and Orchestrating NFV-Ready Servers for Efficient Edge Data Processing
表征和编排 NFV 就绪服务器以实现高效边缘数据处理
The effect of shutter thickness on opto‐mechanical variable optical attenuators
快门厚度对光机械可变光衰减器的影响
  • DOI:
    10.1002/mop.10690
  • 发表时间:
    2003-01-20
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    D. Khalil;H. Maaty;A. Bashir;B. Saadany;G. Wen;C. Law;Zhongxiang Shen;S. Aditya;Chao Li
  • 通讯作者:
    Chao Li
A New Construction of (m+k, m)-Functions with Low Differential Uniformity
低微分均匀性的(m k, m)函数的新构造

Chao Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chao Li', 18)}}的其他基金

Algebraic Cycles and L-functions
代数圈和 L 函数
  • 批准号:
    2401337
  • 财政年份:
    2024
  • 资助金额:
    $ 38.05万
  • 项目类别:
    Standard Grant
Geometric Variational Problems and Scalar Curvature
几何变分问题和标量曲率
  • 批准号:
    2202343
  • 财政年份:
    2021
  • 资助金额:
    $ 38.05万
  • 项目类别:
    Standard Grant
Arithmetic Geometry and Automorphic L-Functions
算术几何和自同构 L 函数
  • 批准号:
    2101157
  • 财政年份:
    2021
  • 资助金额:
    $ 38.05万
  • 项目类别:
    Continuing Grant
Geometric Variational Problems and Scalar Curvature
几何变分问题和标量曲率
  • 批准号:
    2005287
  • 财政年份:
    2020
  • 资助金额:
    $ 38.05万
  • 项目类别:
    Standard Grant
Heegner Points, L-Functions of Elliptic Curves, and Generalizations
海格纳点、椭圆曲线的 L 函数和概括
  • 批准号:
    1802269
  • 财政年份:
    2018
  • 资助金额:
    $ 38.05万
  • 项目类别:
    Standard Grant

相似国自然基金

曲率有下界的流形的几何与拓扑
  • 批准号:
    12371049
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
Hermitian几何中截面曲率的正性
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
平均曲率流与子流形几何的若干研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Ricci曲率有界流形的几何拓扑障碍
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
具有非负数量曲率带边流形上的一些几何分析问题研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Geometric Variational Problems and Scalar Curvature
几何变分问题和标量曲率
  • 批准号:
    2202343
  • 财政年份:
    2021
  • 资助金额:
    $ 38.05万
  • 项目类别:
    Standard Grant
Geometric Variational Problems and Scalar Curvature
几何变分问题和标量曲率
  • 批准号:
    2005287
  • 财政年份:
    2020
  • 资助金额:
    $ 38.05万
  • 项目类别:
    Standard Grant
Geometric Problems Involving Scalar Curvature
涉及标量曲率的几何问题
  • 批准号:
    1906423
  • 财政年份:
    2019
  • 资助金额:
    $ 38.05万
  • 项目类别:
    Standard Grant
Scalar curvature, spectral zeta functions and local geometric invariants for noncommutative spaces
非交换空间的标量曲率、谱 zeta 函数和局部几何不变量
  • 批准号:
    RGPIN-2014-04087
  • 财政年份:
    2018
  • 资助金额:
    $ 38.05万
  • 项目类别:
    Discovery Grants Program - Individual
Scalar curvature, spectral zeta functions and local geometric invariants for noncommutative spaces
非交换空间的标量曲率、谱 zeta 函数和局部几何不变量
  • 批准号:
    RGPIN-2014-04087
  • 财政年份:
    2018
  • 资助金额:
    $ 38.05万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了