Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
基本信息
- 批准号:2332442
- 负责人:
- 金额:$ 6.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project will enable researchers in many fields of science to harness advanced computer algorithms to analyze complex data sets. In many fields, researchers seek to determine what hypotheses are supported by data collected in complex study designs. Data may be complex because they are collected in many locations, at many points in time, from related sampling units, under different sampling conditions, with different sample sizes, and/or with imperfect measurements. Such complexities arise in research fields such as biology, astronomy, education, environmental science, political science, and psychology, among others. When analyzing complex data, it can be difficult for researchers to determine which potential patterns are real and which are spurious. To solve this problem, researchers utilize computer algorithms to thoroughly explore all possible underlying relationships among variables that might explain the observed data. Such algorithms can be slow, costly, and difficult to create, so it is important to make them faster and easier for researchers to use. The investigators of this project have previously created a software package called NIMBLE (Numerical Inference for statistical Models using Bayesian and Likelihood Estimation) for this purpose. NIMBLE has been successfully used for many complex data analysis problems. Compared to other relevant software, NIMBLE enables researchers to use a wider range of algorithms and to customize algorithms to each research problem. This has allowed much faster performance in some cases, which in turn allows more comprehensive analysis of complex data. In the current project, the investigators will extend NIMBLE’s capabilities. They will make it possible to use some kind of accurate mathematical approximations for statistical calculations in combination with existing algorithms, which in turn will allow researchers to create new kinds of hybrid algorithms for data analysis. They will also make it possible to use certain kinds of very efficient calculations in some problems, which will greatly improve performance. The investigators will also provide support and training to users of the software as well as creating educational modules to help the next generation of undergraduate and graduate students learn to use these methods.NIMBLE is unique among hierarchical statistical modeling software because it combines a language for statistical models, a language for model-generic algorithms, and a compiler to generate and use C++ source code for models and algorithms. In the current project, NIMBLE will be extended to support hybrid methods by enabling algorithms to be nested within models. This will allow methods such as sparse grid quadrature to integrate over one set of model dimensions to achieve the calculations needed by another algorithm such as Markov chain Monte Carlo. In turn, this capability will allow composition of methods such as Laplace approximation and methods that use it. This project will also extend NIMBLE’s algorithm language to support sparse matrix algebra methods, allowing this efficient approach to be used by algorithm developers to enhance computational efficiency. Together, the advances in this project will enhance statistical research by enabling NIMBLE to serve as a hub for composition of models and methods, whereby a data analyst can create one statistical model and use many different methods with it. Finally, this project will include training and support for new and existing users.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将使许多科学领域的研究人员能够利用高级计算机算法来分析复杂的数据集。在许多领域,研究人员试图确定复杂研究设计中收集的数据支持哪些假设。数据可能很复杂,因为它们是在许多时间点收集的,在许多时间点,从相关采样单元,在不同的采样条件下,具有不同的样本量和/或具有不完美的测量值的相关采样单元。这种复杂性出现在生物学,天文学,教育,环境科学,政治科学和心理学等研究领域。分析复杂数据时,研究人员很难确定哪些潜在模式是真实的,哪些是虚假的。为了解决这个问题,研究人员利用计算机算法彻底探索了可能解释观察到的数据的变量之间的所有潜在关系。要缓慢,昂贵且难以创建,因此重要的是要使研究人员更快,更易于使用。该项目的研究人员以前已经为此目的创建了一个称为Nimble的软件包(使用贝叶斯和可能性估计的统计模型的数字推断)。 Nimble已成功用于许多复杂的数据分析问题。与其他相关软件相比,Nimble使研究人员能够使用多种算法并自定义每个研究问题的算法。在某些情况下,这允许更快的性能,进而可以对复杂数据进行更全面的分析。在当前项目中,调查人员将扩展敏捷的能力。它们将使使用某种准确的数学近似值与现有算法结合使用,从而使研究人员能够创建新型的混合算法进行数据分析是可能的。他们还将在某些问题中使用某些非常有效的计算,这将大大提高性能。 The investigators will also provide support and training to users of the software as well as creating educational modules to help the next generation of undergraduate and graduate students learn to use these methods.NIMBLE is unique among hierarchical statistical modeling software because it combines a language for Static models, a language for model-generic algorithms, and a compiler to generate and use C++ source code for models and algorithms.在当前的项目中,将扩展灵活以通过使算法嵌套在模型中来支持混合方法。这将允许诸如稀疏的网格正交等方法在一组模型尺寸上集成,以实现另一种算法(例如Markov Chain Monte Carlo)所需的计算。反过来,该功能将允许组成诸如拉普拉斯近似和使用它的方法之类的方法。该项目还将扩展Nimble的算法语言以支持稀疏矩阵代数方法,从而允许算法开发人员使用这种有效的方法来提高计算效率。总之,该项目的进步将通过使灵活成为模型和方法组成的枢纽来增强统计研究,从而使数据分析师可以创建一个统计模型并与其使用许多不同的方法。最后,该项目将包括对新用户和现有用户的培训和支持。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响审查标准来评估,被认为是珍贵的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Turek其他文献
IPM
2
: toward better understanding and forecasting of population dynamics
IPM 2:更好地理解和预测人口动态
- DOI:
10.1002/ecm.1364 - 发表时间:
2019 - 期刊:
- 影响因子:6.1
- 作者:
F. Plard;Daniel Turek;M. Grüebler;M. Schaub - 通讯作者:
M. Schaub
Nested Adaptation of MCMC Algorithms
MCMC算法的嵌套自适应
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:4.4
- 作者:
D. Nguyen;P. Valpine;Y. Atchadé;Daniel Turek;Nick Michaud;C. Paciorek - 通讯作者:
C. Paciorek
Bayesian non-parametric detection heterogeneity in ecological models
生态模型中的贝叶斯非参数检测异质性
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:3.8
- 作者:
Daniel Turek;Claudia Wehrhahn;O. Gimenez - 通讯作者:
O. Gimenez
Increased birth rank of homosexual males: disentangling the older brother effect and sexual antagonism hypothesis
同性恋男性的出生等级提高:解开哥哥效应和性对抗假说
- DOI:
10.1101/2022.02.22.481477 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
M. Raymond;Daniel Turek;V. Durand;Sarah Nila;B. Suryobroto;Julien Vadez;J. Barthès;Menelaos Apostoulou;P. Crochet - 通讯作者:
P. Crochet
Integrated spatial models foster complementarity between monitoring programs in producing large-scale bottlenose dolphin indicators
综合空间模型促进监测计划之间在产生大规模宽吻海豚指标方面的互补性
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Valentin Lauret;H. Labach;Daniel Turek;Sophie Laran;O. Gimenez - 通讯作者:
O. Gimenez
Daniel Turek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Turek', 18)}}的其他基金
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
- 批准号:
2152861 - 财政年份:2022
- 资助金额:
$ 6.99万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332469 - 财政年份:2024
- 资助金额:
$ 6.99万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 6.99万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420846 - 财政年份:2024
- 资助金额:
$ 6.99万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 6.99万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402805 - 财政年份:2024
- 资助金额:
$ 6.99万 - 项目类别:
Standard Grant