CAREER: Structure Learning and Forecasting of Large-Scale Time Series
职业:大规模时间序列的结构学习和预测
基本信息
- 批准号:2239102
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In many areas of modern biological and social sciences, researchers and practitioners seek to gain insight into the dynamics of a complex system using large-scale time series data sets. Examples include gene regulatory network reconstruction using time-course gene expression data sets, functional connectivity analysis of brain network architecture using neurophysiological signals, and monitoring systemic risk in the financial market using historical data on many firms' stock prices. The overarching goal of this project is to develop scalable statistical methods for learning such dynamic relationships using high-dimensional time series (HDTS) data sets, and provide a rigorous analysis of their properties. These methods, upon successful completion, are expected to aid data-driven testable hypothesis generation in systems biology, imaging-based biomarker search in computational neuroscience, and inform regulatory policy for financial risk management and monitoring.The research outcomes will be integrated into a number of education and outreach activities, including development of a modern data science curriculum with an accompanying online textbook as well as training of graduate and undergraduate students.Existing algorithms for analyzing HDTS data sets rely primarily on using modern regularization in machine learning coupled with a squared error loss designed for independent data. This is in sharp contrast with the core modeling philosophy of classical time series, where temporal dependence among observations is explicitly encoded in the likelihood or loss function to increase the accuracy of structure learning and prediction. This project will narrow the gap by designing new algorithms where temporal dependence and regularization inform each other using dependence-aware machine learning methods. In particular, impulse response and quantile-specific graphical models in the time domain, adaptively regularized graphical models in the frequency domain, and random forests that explicitly incorporate temporal dependence in building regression trees, will be developed. These methods will be validated on real data sets from genomics, neuroscience and financial economics in consultation with domain experts. Results will be disseminated to public by publishing peer-reviewed articles in statistics, machine learning and other scientific journals. Software implementations of algorithms developed in this project will be made publicly available in the form of R packages.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在现代生物和社会科学的许多领域,研究人员和从业者寻求使用大规模时间序列数据集来深入了解复杂系统的动态。例子包括使用时程基因表达数据集重建基因调控网络、使用神经生理学信号对大脑网络架构进行功能连接分析,以及使用许多公司股票价格的历史数据监测金融市场的系统性风险。该项目的总体目标是开发可扩展的统计方法,用于使用高维时间序列 (HDTS) 数据集学习此类动态关系,并对其属性进行严格分析。这些方法一旦成功完成,预计将有助于系统生物学中数据驱动的可测试假设生成、计算神经科学中基于成像的生物标志物搜索,并为金融风险管理和监测的监管政策提供信息。研究成果将被整合到多个研究项目中。教育和推广活动,包括开发现代数据科学课程及其在线教科书以及对研究生和本科生的培训。分析 HDTS 数据集的现有算法主要依赖于在机器学习中使用现代正则化以及平方误差为独立数据设计的损失。这与经典时间序列的核心建模原理形成鲜明对比,在经典时间序列中,观察之间的时间依赖性被明确编码在似然或损失函数中,以提高结构学习和预测的准确性。该项目将通过设计新算法来缩小差距,其中时间依赖和正则化使用依赖感知机器学习方法相互告知。特别是,将开发时域中的脉冲响应和分位数特定图形模型、频域中的自适应正则化图形模型以及在构建回归树中明确纳入时间依赖性的随机森林。这些方法将与领域专家协商,在基因组学、神经科学和金融经济学的真实数据集上进行验证。研究结果将通过在统计、机器学习和其他科学期刊上发表同行评审的文章的方式向公众传播。该项目中开发的算法的软件实现将以 R 包的形式公开提供。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sumanta Basu其他文献
The Macroeconomic Effects of Natural Resource Extraction: Applications to Papua New Guinea
自然资源开采的宏观经济影响:在巴布亚新几内亚的应用
- DOI:
10.5089/9781484321379.001 - 发表时间:
2013-05-01 - 期刊:
- 影响因子:0
- 作者:
Sumanta Basu;J. Gottschalk;W. Schule;Nikhil Vellodi;Shu - 通讯作者:
Shu
High-Dimensional Estimation, Basis Assets, and the Adaptive Multi-Factor Model
高维估计、基础资产和自适应多因素模型
- DOI:
10.1142/s2010139220500172 - 发表时间:
2018-04-23 - 期刊:
- 影响因子:0
- 作者:
Liao Zhu;Sumanta Basu;R. Jarrow;M. Wells - 通讯作者:
M. Wells
Imprecise modified solid green traveling purchaser problem for substitute items using quantum-inspired genetic algorithm
使用量子启发遗传算法对替代品进行不精确修正的固体绿色旅行购买者问题
- DOI:
10.1016/j.cie.2020.106578 - 发表时间:
2020-07-21 - 期刊:
- 影响因子:0
- 作者:
Kunal Pradhan;Sumanta Basu;K. Thakur;Samir Maity;M. Maiti - 通讯作者:
M. Maiti
Design of Multi-Input Multi-Output Non-linear Model Predictive Control for Main Steam Temperature of Super Critical Boiler
超临界锅炉主蒸汽温度多输入多输出非线性模型预测控制设计
- DOI:
10.11648/j.ijmea.20241201.13 - 发表时间:
2024-02-21 - 期刊:
- 影响因子:0
- 作者:
Sumanta Basu;Sushil Cherian;Jisna Johnson - 通讯作者:
Jisna Johnson
Sparse Identification and Estimation of High-Dimensional Vector AutoRegressive Moving Averages
高维向量自回归移动平均线的稀疏识别与估计
- DOI:
10.1080/03610926.2018.1554130 - 发表时间:
2017-07-28 - 期刊:
- 影响因子:0
- 作者:
I. Wilms;Sumanta Basu;J. Bien;D. Matteson - 通讯作者:
D. Matteson
Sumanta Basu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sumanta Basu', 18)}}的其他基金
Collaborative Research: Learning Graphical Models for Nonstationary Time Series
协作研究:学习非平稳时间序列的图形模型
- 批准号:
2210675 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Modeling Temporal Dynamics of Large Systems from High-Dimensional Time Series Data
根据高维时间序列数据对大型系统的时间动态进行建模
- 批准号:
1812128 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似国自然基金
少监督下的跨层次语言结构建模及表征学习研究
- 批准号:62306216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
机器学习增强的多尺度固体电解质相界面结构预测
- 批准号:22303058
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于域自适应及半监督学习的眼底脉络膜结构提取与分析技术研究与应用
- 批准号:82371112
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
重载铁路有砟轨道结构病害的深度学习诊断与安全评估方法研究
- 批准号:52372435
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高维复杂失效域下飞行器结构可靠性分析的双层自适应学习方法研究
- 批准号:52305150
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
- 批准号:
2339112 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Neurodevelopment of executive function, appetite regulation, and obesity in children and adolescents
儿童和青少年执行功能、食欲调节和肥胖的神经发育
- 批准号:
10643633 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别: