CCF: Small: Real-Number Function Encoding Driven Error Resilient Signal Processing and Control: Application to Nonlinear Systems from Adaptive Filters to DNNs

CCF:小型:实数函数编码驱动的误差弹性信号处理和控制:从自适应滤波器到 DNN 的非线性系统应用

基本信息

  • 批准号:
    2128419
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Technology scaling, device integration and high circuit speeds have increased the risk of errors in digital processors running computing and control applications. Such errors can jeopardize the operational safety of autonomous systems employing embedded processors in the field, causing severe loss of performance, accidents, or damage to life and property. To put this in perspective, applications such as self-driving cars and drones demand tera-ops of computation throughput and yet must perform with exacting levels of reliability and safety. The latter reliability and safety demands must be met with minimal degrees of hardware and software redundancy without negatively impacting dependability, power consumption, payload, form factor and cost considerations that are critical for commercial success. To alleviate relevant safety threats, this project aims to deploy low-cost and efficient methods for detecting and mitigating the effects of monitored errors in real time and in the field as effectively and rapidly as possible. This will enable a paradigm shift in the way failure-tolerance technologies are applied to autonomous systems while maintaining their reliability, affordability and cost. The project integrates research with education involving development of educational infrastructure for teaching and laboratory work, incorporation of diversity in student participation, exchanges with industry, technology transfer and engagement with undergraduate and high-school students, all with the goal of producing highly qualified trained engineers for the workplace of the future.Today, implementing failure tolerance for nonlinear signal-processing and control algorithms is dependent on some form of computation duplication. The algorithm-based fault-tolerance techniques of the past were designed mostly for linear computations and are not directly applicable to error control in nonlinear computations of modern autonomous systems. To resolve this, the project is built around the concept of algorithmic checks that encode nonlinear computations with linearized or nonlinear checking mechanisms. The checks are created using analytical methods for weakly nonlinear systems or by machine-learning algorithms for generic nonlinear systems and enable real-time error detection in switched capacitor circuits, nonlinear digital filters, adaptive state-estimation filters, nonlinear control algorithms and deep neural networks. Error correction is performed via state restoration in which the system state after error detection is restored to a prior fault-free system state or by using probabilistic error-compensation techniques. The core techniques can be applied to different aspects of the core computations performed in embedded computing infrastructure for autonomous systems, namely perception, intelligence, decision-making and control to make them error-resilient and trustworthy. The underlying science is enabling the design of entirely new classes of self-checking reliable autonomous systems that are beyond the scope of the current state of the art.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
技术扩展、设备集成和高电路速度增加了运行计算和控制应用的数字处理器出错的风险。 此类错误可能会危及现场使用嵌入式处理器的自主系统的操作安全,导致严重的性能损失、事故或生命和财产损失。从角度来看,自动驾驶汽车和无人机等应用需要万亿次计算吞吐量,但必须以严格的可靠性和安全性水平运行。后者的可靠性和安全性要求必须以最小程度的硬件和软件冗余来满足,而不会对对于商业成功至关重要的可靠性、功耗、有效负载、外形尺寸和成本考虑因素产生负面影响。为了减轻相关的安全威胁,该项目旨在部署低成本、高效的方法,尽可能有效、快速地实时检测和减轻监控错误的影响。这将使容错技术应用于自主系统的方式发生范式转变,同时保持其可靠性、可承受性和成本。 该项目将研究与教育相结合,涉及教学和实验室工作的教育基础设施的开发、学生参与的多样性、与行业的交流、技术转让以及与本科生和高中生的接触,所有这些都旨在培养高素质的训练有素的工程师如今,实现非线性信号处理和控制算法的容错能力依赖于某种形式的计算重复。过去基于算法的容错技术主要是针对线性计算而设计的,不能直接应用于现代自治系统非线性计算中的误差控制。为了解决这个问题,该项目围绕算法检查的概念构建,该算法检查使用线性或非线性检查机制对非线性计算进行编码。 这些检查是使用弱非线性系统的分析方法或通用非线性系统的机器学习算法创建的,并可在开关电容器电路、非线性数字滤波器、自适应状态估计滤波器、非线性控制算法和深度神经网络中进行实时错误检测。纠错是通过状态恢复来执行的,其中将错误检测后的系统状态恢复到先前无故障的系统状态,或者通过使用概率错误补偿技术来执行。 核心技术可应用于自主系统嵌入式计算基础设施中执行的核心计算的不同方面,即感知、智能、决策和控制,使其具有容错性和可信性。基础科学正在实现全新类别的自检可靠自主系统的设计,这些系统超出了当前技术水平的范围。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力评估进行评估,被认为值得支持。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Resilience Framework for Synapse Weight Errors and Firing Threshold Perturbations in RRAM Spiking Neural Networks
RRAM 尖峰神经网络中突触权重误差和激发阈值扰动的弹性框架
  • DOI:
    10.1109/ets56758.2023.10174229
  • 发表时间:
    2023-05-22
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anurup Saha;C. Amarnath;A. Chatterjee
  • 通讯作者:
    A. Chatterjee
Error Resilient Transformer Networks: A Novel Sensitivity Guided Approach to Error Checking and Suppression
容错变压器网络:一种新颖的灵敏度引导的错误检查和抑制方法
  • DOI:
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ma, Kwondo.;Amarnath, Chandramouli.;Chatterjee, Abhijit.
  • 通讯作者:
    Chatterjee, Abhijit.
Efficient Low Cost Alternative Testing of Analog Crossbar Arrays for Deep Neural Networks
深度神经网络模拟交叉阵列的高效低成本替代测试
Soft Error Resilient Deep Learning Systems Using Neuron Gradient Statistics
使用神经元梯度统计的软错误弹性深度学习系统
A Novel Approach to Error Resilience in Online Reinforcement Learning
在线强化学习中的错误恢复新方法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Abhijit Chatterjee其他文献

The effect of occlusive and unocclusive exposure to xylene and benzene on skin irritation and molecular responses in hairless rats
闭塞和非闭塞接触二甲苯和苯对无毛大鼠皮肤刺激和分子反应的影响
  • DOI:
    10.1007/s00204-004-0629-1
  • 发表时间:
    2005-04-13
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Abhijit Chatterjee;R. Babu;E. Ahaghotu;M;ip Singh;ip
  • 通讯作者:
    ip
Percutaneous absorption and skin irritation upon low-level prolonged dermal exposure to nonane, dodecane and tetradecane in hairless rats
无毛大鼠低水平长时间皮肤接触壬烷、十二烷和十四烷后的经皮吸收和皮肤刺激
  • DOI:
    10.1191/0748233704th197oa
  • 发表时间:
    2004-07-01
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    R. Babu;Abhijit Chatterjee;E. Ahaghotu;Mandip Singh
  • 通讯作者:
    Mandip Singh
TESDA: Transform Enabled Statistical Detection of Attacks in Deep Neural Networks
TESDA:基于变换的深度神经网络攻击统计检测
  • DOI:
    10.1007/s10994-021-06068-6
  • 发表时间:
    2021-10-16
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Amarnath;Aishwarya H. Balwani;Kwondo Ma;Abhijit Chatterjee
  • 通讯作者:
    Abhijit Chatterjee
Error Resilience in Deep Neural Networks Using Neuron Gradient Statistics
使用神经元梯度统计的深度神经网络的错误恢复能力
Gaussian Control Barrier Functions: Non-Parametric Paradigm to Safety
高斯控制屏障函数:非参数安全范式
  • DOI:
    10.1109/access.2022.3206372
  • 发表时间:
    2022-03-29
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Mouhyemen Khan;Tatsuya Ibuki;Abhijit Chatterjee
  • 通讯作者:
    Abhijit Chatterjee

Abhijit Chatterjee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Abhijit Chatterjee', 18)}}的其他基金

Collaborative Research: An Effective and Efficient Low-Cost Alternate to Cell Aware Test Generation for Cell Internal Defects
协作研究:针对电池内部缺陷的电池感知测试生成有效且高效的低成本替代方案
  • 批准号:
    2331002
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EFFICIENT TESTING AND POST-MANUFACTURE TUNING OF BEAMFORMING MIMO WIRELESS COMMUNICATION SYSTEMS: ALGORITHMS AND INFRASTRUCTURE
波束赋形 MIMO 无线通信系统的高效测试和制造后调整:算法和基础设施
  • 批准号:
    1815653
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SaTC: STARSS: Trojan Detection and Diagnosis in Mixed-Signal Systems Using On-The-Fly Learned, Precomputed and Side Channel Tests
SaTC:STARSS:使用动态学习、预计算和侧通道测试的混合信号系统中的特洛伊木马检测和诊断
  • 批准号:
    1441754
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research:Cross-Domain Built-In Tuning of Advanced Mixed- Signal Radio-Frequncy Systems-on-Chip For Yield Recovery and Electrical Stress Management
合作研究:先进混合信号射频片上系统的跨域内置调谐,用于良率恢复和电应力管理
  • 批准号:
    1407542
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CCF: Small: Learning Assisted Induced Noise and Error Tolerant Digital and Analog Filters Using Reduced-Distance Codes
CCF:小型:使用缩短距离代码的学习辅助感应噪声和容错数字和模拟滤波器
  • 批准号:
    1421353
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CCF:SMALL:TIMING VARIATION RESILIENT SIGNAL PROCESSING: HARDWARE-ASSISTED CROSS-LAYER ADAPTATION
CCF:SMALL:时序变化弹性信号处理:硬件辅助跨层自适应
  • 批准号:
    1319783
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CIF: Imperfection-Resilient Scalable Digital Signal Processing Algorithms and Architectures Using Significance Driven Computation
CIF:使用重要性驱动计算的不完美弹性可扩展数字信号处理算法和架构
  • 批准号:
    0916270
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Resarch: Targeting Multi-Core Clock Performance Gains in the Face of Extreme Process Variations
协作研究:在极端工艺变化的情况下瞄准多核时钟性能增益
  • 批准号:
    0903454
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EHCS: Dynamic Vertically Integrated Power-Performance-Reliability Modulation in Embedded Digital Signal Processors
EHCS:嵌入式数字信号处理器中的动态垂直集成功率性能可靠性调制
  • 批准号:
    0834484
  • 财政年份:
    2008
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似国自然基金

小分子代谢物Catechin与TRPV1相互作用激活外周感觉神经元介导尿毒症瘙痒的机制研究
  • 批准号:
    82371229
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
DHEA抑制小胶质细胞Fis1乳酸化修饰减轻POCD的机制
  • 批准号:
    82301369
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SETDB1调控小胶质细胞功能及参与阿尔茨海默病发病机制的研究
  • 批准号:
    82371419
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
PTBP1驱动H4K12la/BRD4/HIF1α复合物-PKM2正反馈环路促进非小细胞肺癌糖代谢重编程的机制研究及治疗方案探索
  • 批准号:
    82303616
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CC* Integration-Small: Network-Aware Edge Computing for Real-time Wildfire Detection
CC* Integration-Small:用于实时野火检测的网络感知边缘计算
  • 批准号:
    2346755
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NSF-BSF: NeTS: Small: Making BGP work for real-time interactive applications
NSF-BSF:NeTS:小型:使 BGP 适用于实时交互式应用程序
  • 批准号:
    2344761
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
  • 批准号:
    2317251
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
  • 批准号:
    2331400
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
  • 批准号:
    2331401
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了