CC* Integration-Small: Network-Aware Edge Computing for Real-time Wildfire Detection

CC* Integration-Small:用于实时野火检测的网络感知边缘计算

基本信息

项目摘要

The proliferation of Internet of Things (IoT) devices has facilitated the development of various scientific applications, from smart city initiatives to environmental hazard monitoring systems. In most of these applications, swift processing of data captured by IoT sensors is crucial to prevent natural disasters in a timely manner. While conventional cloud-based data processing pipelines offer cost-effective and performance-efficient solutions, it is often challenging to meet stringent performance requirements of hazard monitoring systems such as low latency and high bandwidth. Edge computing emerges as a compelling solution to bridge this gap by bringing computational processing closer to the data source. This project develops an edge computing framework tailored to address the computational requirements of time-sensitive distributed scientific applications such as wildfire monitoring. The edge computing framework has the potential to benefit other domains beyond wildfire monitoring, such as autonomous vehicles and emergency response systems.The project develops an edge computing framework that optimizes the task scheduling problem by combining high precision system monitoring with comprehensive application profiling. It develops a scalable resource monitoring system to monitor the status of compute resources (e.g., edge servers and cloud instances) and network resources using lightweight monitoring agents and P4 programmable network devices. Additionally, the project conducts application profiling to extract essential metrics regarding resource utilization and execution time of tasks across various edge server and cloud instance configurations. The scheduling is formulated as a multi-objective optimization problem, and various optimization methods such as mixed-integer linear programming, genetic algorithms, and heuristic methods are explored. Finally, the team targets a wildfire detection project (AlertWildfire) as a use case to demonstrate the effectiveness of the proposed framework. This project is jointly funded by Office of Advanced Cyberinfrastructure, the Established Program to Stimulate Competitive Research (EPSCoR), and the Division of Computer and Network Systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
物联网 (IoT) 设备的激增促进了从智慧城市计划到环境危害监测系统等各种科学应用的发展。在大多数此类应用中,快速处理物联网传感器捕获的数据对于及时预防自然灾害至关重要。虽然传统的基于云的数据处理管道提供了经济高效且性能高效的解决方案,但满足危险监测系统严格的性能要求(例如低延迟和高带宽)通常具有挑战性。边缘计算成为一种引人注目的解决方案,通过使计算处理更接近数据源来弥补这一差距。 该项目开发了一个边缘计算框架,旨在满足时间敏感的分布式科学应用(例如野火监测)的计算要求。边缘计算框架有可能使野火监测以外的其他领域受益,例如自动驾驶汽车和应急响应系统。该项目开发了一种边缘计算框架,通过将高精度系统监测与全面的应用程序分析相结合来优化任务调度问题。它开发了一个可扩展的资源监控系统,使用轻量级监控代理和 P4 可编程网络设备来监控计算资源(例如边缘服务器和云实例)和网络资源的状态。此外,该项目还进行应用程序分析,以提取有关跨各种边缘服务器和云实例配置的资源利用率和任务执行时间的基本指标。将调度问题表述为多目标优化问题,并探索了混合整数线性规划、遗传算法和启发式方法等各种优化方法。最后,该团队以野火检测项目(AlertWildfire)为用例来证明所提出框架的有效性。该项目由先进网络基础设施办公室、刺激竞争性研究既定计划 (EPSCoR) 以及计算机和网络系统部门共同资助。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力评估进行评估,认为值得支持。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Batyr Charyyev其他文献

Locality-Sensitive IoT Network Traffic Fingerprinting for Device Identification
用于设备识别的位置敏感物联网网络流量指纹
  • DOI:
    10.1109/jiot.2020.3035087
  • 发表时间:
    2020-11-02
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Batyr Charyyev;M. H. Gunes
  • 通讯作者:
    M. H. Gunes
Dynamic Network of United States Air Transportation at Multiple Levels
美国航空运输多层次动态网络
  • DOI:
    10.1007/978-3-030-40943-2_24
  • 发表时间:
    2020-02-22
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Batyr Charyyev;Mustafa Solmaz;M. H. Gunes
  • 通讯作者:
    M. H. Gunes
RIVA: Robust Integrity Verification Algorithm for High-Speed File Transfers
RIVA:用于高速文件传输的强大完整性验证算法
IoT Traffic Flow Identification using Locality Sensitive Hashes
使用位置敏感哈希进行物联网流量识别
Complex network of United States migration
美国移民的复杂网络

Batyr Charyyev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

诊疗一体化PS-Hc@MB协同训练介导脑小血管病康复的作用及机制研究
  • 批准号:
    82372561
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
“靶免治疗一体化”多肽小分子前药的构建及在膀胱癌中的应用研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于超高场磁共振的脑小血管结构与功能一体化高时空分辨率成像方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
镥-177标记“半胱氨酸结”肽突变体用于非小细胞肺癌诊疗一体化的研究
  • 批准号:
    81971645
  • 批准年份:
    2019
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

CC* Integration-Small: M2- NET: An Integrated Access and Backhaul Millimeter-wave Wireless Network for Campus Connectivity and Research
CC* Integration-Small:M2-NET:用于校园连接和研究的集成接入和回程毫米波无线网络
  • 批准号:
    2346621
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CC* INTEGRATION-SMALL: ADIABATIC MICROSERVICE LEVEL LOAD BALANCED FORWARDING ON PISA SWITCH FOR ACCELERATING URGENT PROCESSES IN SCIENCE DATA CENTER NETWORKS
CC* 集成小型:PISA 交换机上的绝热微服务级负载平衡转发,用于加速科学数据中心网络中的紧急进程
  • 批准号:
    2346729
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CC* Integration-Small: Enhancing Data Transfers by Enabling Programmability and Closed-loop Control in a Non-programmable Science DMZ
CC* Integration-Small:通过在不可编程科学 DMZ 中启用可编程性和闭环控制来增强数据传输
  • 批准号:
    2346726
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CC* Integration-Small: Network cyberinfrastructure innovation with an intelligent real-time traffic analysis framework and application-aware networking
CC* Integration-Small:网络基础设施创新,具有智能实时流量分析框架和应用感知网络
  • 批准号:
    2322369
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CC* Integration-Small: Integrating Application Agnostic Learning with FABRIC for Enabling Realistic High-Fidelity Traffic Generation and Modeling
CC* Integration-Small:将应用程序无关学习与 FABRIC 集成,以实现现实的高保真流量生成和建模
  • 批准号:
    2419070
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了