CIF: Imperfection-Resilient Scalable Digital Signal Processing Algorithms and Architectures Using Significance Driven Computation
CIF:使用重要性驱动计算的不完美弹性可扩展数字信号处理算法和架构
基本信息
- 批准号:0916270
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-15 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Present-day integrated circuits are expected to deliver high-quality/high-performance levels under ever-diminishing power budgets. Due to quadratic dependence of power on voltage, supply voltage scaling has been investigated as an effective method to reduce power. However, supply scaling increases the delays in all computation paths and can result in incorrect or incomplete computation of certain paths. Besides power dissipation, process variations also pose a major design concern with technology scaling. Supply voltage can be scaled-up or logic gates can be up-sized to prevent delay failures and to achieve higher parametric yield. However, such techniques come at the cost of increased power and/or die area. Meeting the contradictory requirements of high yield, low power and high quality are becoming exceedingly challenging in nanometer designs. Hence, there is a need for a scalable design methodology in which minimal output quality degradation is achieved under changing power constraints and process conditions. In addition, for a prescribed power consumption level and process, design methodology must take into account the effects of input signal noise and distortion on the fidelity of the Digital Signal Processing (DSP) computation and ensure that graceful output quality degradation is achieved under varying degrees of noise and distortion through proper algorithm and hardware design. The research involves development of a systematic methodology for reorganizing (transforming) algorithmic level computations, data and underlying hardware in such a way that minimum performance degradation in DSP systems is achieved under reduced power supply, increased process variations and reduced input signal quality. It has been observed that for DSP applications/systems, all computations are not equally important in shaping the output response. This information is exploited by the investigators to develop suitable algorithms/architectures that provide the ?right? trade-offs between output quality vs. energy consumption (supply scaling) vs. parametric yield due to process variations vs. input signal noise. To address resilience to process variations, the investigators identify the significant/not-so-significant components of such systems based on output sensitivities. Under such a scenario, with scaled supply voltage and/or parameter variations, if there are potential delay failures in some paths, only the less-significant computations are affected. In other words, using carefully designed algorithms and architectures, the investigators provide unequal error protection (under voltage over-scaling) to significant/not-so-significant computation elements, thereby achieving large improvements in power dissipation with graceful degradation in output signal quality.
当今的集成电路有望在不断减少的功耗预算下提供高质量/高性能水平。由于功率与电压的二次相关性,电源电压缩放已被研究为降低功率的有效方法。然而,电源缩放会增加所有计算路径中的延迟,并可能导致某些路径的计算不正确或不完整。除了功耗之外,工艺变化也是技术扩展的主要设计问题。可以按比例放大电源电压或增大逻辑门的尺寸,以防止延迟故障并实现更高的参数良率。然而,此类技术的代价是增加功率和/或芯片面积。在纳米设计中,满足高产量、低功耗和高质量的矛盾要求正变得极具挑战性。因此,需要一种可扩展的设计方法,在不断变化的功率限制和工艺条件下实现最小的输出质量下降。此外,对于规定的功耗水平和流程,设计方法必须考虑输入信号噪声和失真对数字信号处理(DSP)计算保真度的影响,并确保在不同程度上实现输出质量的适度下降。通过适当的算法和硬件设计来消除噪声和失真。 该研究涉及开发一种系统方法,用于重组(转换)算法级计算、数据和底层硬件,从而在电源减少、工艺变化增加和输入信号质量降低的情况下实现 DSP 系统性能下降最小化。据观察,对于 DSP 应用/系统,所有计算在塑造输出响应方面并非同等重要。研究人员利用这些信息来开发合适的算法/架构,以提供“权利”。由于工艺变化与输入信号噪声而导致的输出质量与能耗(电源缩放)与参数良率之间的权衡。为了解决过程变化的弹性问题,研究人员根据输出敏感性识别此类系统的重要/不那么重要的组件。在这种情况下,随着电源电压和/或参数变化的变化,如果某些路径中存在潜在的延迟故障,则仅影响不太重要的计算。换句话说,利用精心设计的算法和架构,研究人员为重要/不那么重要的计算元件提供不等错误保护(欠压过缩放),从而实现功耗的大幅改善,同时输出信号质量适度下降。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Abhijit Chatterjee其他文献
The effect of occlusive and unocclusive exposure to xylene and benzene on skin irritation and molecular responses in hairless rats
闭塞和非闭塞接触二甲苯和苯对无毛大鼠皮肤刺激和分子反应的影响
- DOI:
10.1007/s00204-004-0629-1 - 发表时间:
2005-04-13 - 期刊:
- 影响因子:6.1
- 作者:
Abhijit Chatterjee;R. Babu;E. Ahaghotu;M;ip Singh;ip - 通讯作者:
ip
Percutaneous absorption and skin irritation upon low-level prolonged dermal exposure to nonane, dodecane and tetradecane in hairless rats
无毛大鼠低水平长时间皮肤接触壬烷、十二烷和十四烷后的经皮吸收和皮肤刺激
- DOI:
10.1191/0748233704th197oa - 发表时间:
2004-07-01 - 期刊:
- 影响因子:1.9
- 作者:
R. Babu;Abhijit Chatterjee;E. Ahaghotu;Mandip Singh - 通讯作者:
Mandip Singh
TESDA: Transform Enabled Statistical Detection of Attacks in Deep Neural Networks
TESDA:基于变换的深度神经网络攻击统计检测
- DOI:
10.1007/s10994-021-06068-6 - 发表时间:
2021-10-16 - 期刊:
- 影响因子:0
- 作者:
C. Amarnath;Aishwarya H. Balwani;Kwondo Ma;Abhijit Chatterjee - 通讯作者:
Abhijit Chatterjee
Error Resilience in Deep Neural Networks Using Neuron Gradient Statistics
使用神经元梯度统计的深度神经网络的错误恢复能力
- DOI:
10.1109/tcad.2023.3335144 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:2.9
- 作者:
C. Amarnath;Mohamed Mejri;Kwondo Ma;Abhijit Chatterjee - 通讯作者:
Abhijit Chatterjee
Gaussian Control Barrier Functions: Non-Parametric Paradigm to Safety
高斯控制屏障函数:非参数安全范式
- DOI:
10.1109/access.2022.3206372 - 发表时间:
2022-03-29 - 期刊:
- 影响因子:3.9
- 作者:
Mouhyemen Khan;Tatsuya Ibuki;Abhijit Chatterjee - 通讯作者:
Abhijit Chatterjee
Abhijit Chatterjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Abhijit Chatterjee', 18)}}的其他基金
Collaborative Research: An Effective and Efficient Low-Cost Alternate to Cell Aware Test Generation for Cell Internal Defects
协作研究:针对电池内部缺陷的电池感知测试生成有效且高效的低成本替代方案
- 批准号:
2331002 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CCF: Small: Real-Number Function Encoding Driven Error Resilient Signal Processing and Control: Application to Nonlinear Systems from Adaptive Filters to DNNs
CCF:小型:实数函数编码驱动的误差弹性信号处理和控制:从自适应滤波器到 DNN 的非线性系统应用
- 批准号:
2128419 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CCF: Small: Real-Number Function Encoding Driven Error Resilient Signal Processing and Control: Application to Nonlinear Systems from Adaptive Filters to DNNs
CCF:小型:实数函数编码驱动的误差弹性信号处理和控制:从自适应滤波器到 DNN 的非线性系统应用
- 批准号:
2128419 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
EFFICIENT TESTING AND POST-MANUFACTURE TUNING OF BEAMFORMING MIMO WIRELESS COMMUNICATION SYSTEMS: ALGORITHMS AND INFRASTRUCTURE
波束赋形 MIMO 无线通信系统的高效测试和制造后调整:算法和基础设施
- 批准号:
1815653 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
S&AS: FND: Real-Time Self-Diagnosis and Correction in Linear and Nonlinear Control of Autonomous Systems Using Encoded State Space Error Signatures
S
- 批准号:
1723997 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
SaTC: STARSS: Trojan Detection and Diagnosis in Mixed-Signal Systems Using On-The-Fly Learned, Precomputed and Side Channel Tests
SaTC:STARSS:使用动态学习、预计算和侧通道测试的混合信号系统中的特洛伊木马检测和诊断
- 批准号:
1441754 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research:Cross-Domain Built-In Tuning of Advanced Mixed- Signal Radio-Frequncy Systems-on-Chip For Yield Recovery and Electrical Stress Management
合作研究:先进混合信号射频片上系统的跨域内置调谐,用于良率恢复和电应力管理
- 批准号:
1407542 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CCF: Small: Learning Assisted Induced Noise and Error Tolerant Digital and Analog Filters Using Reduced-Distance Codes
CCF:小型:使用缩短距离代码的学习辅助感应噪声和容错数字和模拟滤波器
- 批准号:
1421353 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CCF:SMALL:TIMING VARIATION RESILIENT SIGNAL PROCESSING: HARDWARE-ASSISTED CROSS-LAYER ADAPTATION
CCF:SMALL:时序变化弹性信号处理:硬件辅助跨层自适应
- 批准号:
1319783 - 财政年份:2013
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Resarch: Targeting Multi-Core Clock Performance Gains in the Face of Extreme Process Variations
协作研究:在极端工艺变化的情况下瞄准多核时钟性能增益
- 批准号:
0903454 - 财政年份:2009
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
不完美信息动态博弈下复杂网络攻击的时限特征与防御策略构建
- 批准号:52367003
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
不完美资本市场下供应链的绿色信贷融资决策及补贴机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
不完美信息和名义刚性下的中央银行沟通
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于部件再分配和不完美维修的多部件系统维护策略建模与优化研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
源相位随机不完美的测量设备无关量子密钥分发攻防研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Macroeconomic analysis of credit market imperfection and aging society with fewer children
信贷市场不完善与少儿化社会的宏观经济分析
- 批准号:
23K01385 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Imperfection Of The Perfect Body An Interdisciplinary Exploration Of Gendered Oppression In Female Gymnastics Through Choreographic Practice
完美身材的不完美通过编舞实践对女性体操性别压迫的跨学科探索
- 批准号:
2885038 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Studentship
Art of Footprints: Aesthetics of Disappearance and Imperfection of Richard Long's Walk-Works
足迹的艺术:理查德·朗步行作品的消失与不完美美学
- 批准号:
19K00149 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Imperfectionist Aesthetics: Philosophy, Art, Culture
不完美主义美学:哲学、艺术、文化
- 批准号:
19K00143 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accepting imperfection: Exploring the effectiveness of a dialectical behavior therapy skills training intervention for university students high in perfectionism and suicide ideation
接受不完美:探索辩证行为治疗技能训练干预对完美主义和自杀意念大学生的有效性
- 批准号:
365508 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Studentship Programs