EHCS: Dynamic Vertically Integrated Power-Performance-Reliability Modulation in Embedded Digital Signal Processors
EHCS:嵌入式数字信号处理器中的动态垂直集成功率性能可靠性调制
基本信息
- 批准号:0834484
- 负责人:
- 金额:$ 22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-15 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Serious new technical challenges are barriers to advances in microelectronics technology as technology scaling comes up against fundamental limits of material properties and lithography. Large process variations and other random performance and power constraining imperfections are now being observed as microelectronic devices are scaled down to atomic dimensions. This requires that module level performance in electronic designs be pessimistically guardbanded to ensure proper overall system level functionality, forcing systems to operate at performance levels far below the inherent capability of the underlying design fabric. In addition, embedded DSP systems must be designed to work under worst case operating conditions resulting from ill-conditioned input signals. Wider guardbands from increasing performance and input signal variability in future technologies can negate most of the performance benefits of scaling, stalling a key payoff from Moore?s Law for embedded systems. In such an environment, introduction of new scaled devices will be cost-effective only if the guardbands can be controlled down to acceptable margins, despite the presence of these uncertainties. This remains a major unsolved challenge, especially for embedded DSP processors that must be concurrently optimized for system level power, performance and reliability. To address these problems, this project is developing the concept of test, diagnosis and continuous signal monitoring enabled dynamic circuit-architecture-algorithm co-modulation (or co-tuning) for both static (procees) and dynamic (input signal) uncertainties. Under this new design paradigm, feedback driven reconfiguration control mechanisms involving circuitry and software (?tuning knobs?) are designed into the IC to support power-performance trade-off and reliability recovery post manufacture. The research pursues vertically integrated circuit-architecture-algorithm tuning methods that offer 10X benefits over optimizations performed at a single level of the design hierarchy. The diagnostic information generated is used to dynamically optimize (post-manufacture) individual module level behavior to optimize system level performance, power and reliability metrics via specially designed hardware and software control mechanisms. In this way, each instantiation of a design adapts to the maximum performance, power, and reliability levels it is capable of in the presence of process variations and adverse operating conditions. Graduate students working on the project receive a unique kind of training in this multidisciplinary research, which together the fields of digital design and test, control systems, embedded digital signal processing architectures, and algorithms. The students participate in summer internship programs with industry. Through joint efforts at Georgia Tech, Auburn University, and Tuskegee University, this project also actively supports the goals of recruiting more U.S. citizens, women and minorities to graduate programs.
由于技术扩展遇到了材料特性和光刻的基本限制,严重的新技术挑战成为微电子技术进步的障碍。随着微电子器件缩小到原子尺寸,现在可以观察到大的工艺变化以及其他随机性能和功率限制缺陷。 这要求对电子设计中的模块级性能进行悲观保护带,以确保正确的整体系统级功能,迫使系统以远低于底层设计结构固有能力的性能水平运行。 此外,嵌入式 DSP 系统必须设计为能够在由病态输入信号导致的最坏情况操作条件下工作。未来技术中提高性能和输入信号可变性带来的更宽的保护带可能会抵消扩展带来的大部分性能优势,从而阻碍嵌入式系统摩尔定律的关键回报。在这样的环境中,尽管存在这些不确定性,但只有当保护带能够控制在可接受的范围内时,引入新的扩展设备才具有成本效益。这仍然是一个尚未解决的重大挑战,特别是对于必须同时针对系统级功耗、性能和可靠性进行优化的嵌入式 DSP 处理器。为了解决这些问题,该项目正在开发测试、诊断和连续信号监控的概念,从而实现静态(过程)和动态(输入信号)不确定性的动态电路架构算法协同调制(或协同调谐)。在这种新的设计范例下,涉及电路和软件(“调谐旋钮”)的反馈驱动重配置控制机制被设计到 IC 中,以支持功率性能权衡和制造后的可靠性恢复。该研究追求垂直集成电路架构算法调整方法,与在设计层次结构的单一级别执行优化相比,该方法具有 10 倍的优势。生成的诊断信息用于动态优化(制造后)各个模块级行为,通过专门设计的硬件和软件控制机制来优化系统级性能、功耗和可靠性指标。通过这种方式,设计的每个实例都可以适应在存在工艺变化和不利操作条件的情况下能够达到的最大性能、功率和可靠性水平。从事该项目的研究生在这项多学科研究中接受了独特的培训,这些研究涵盖了数字设计和测试、控制系统、嵌入式数字信号处理架构和算法等领域。学生参加行业暑期实习计划。通过佐治亚理工学院、奥本大学和塔斯基吉大学的共同努力,该项目还积极支持招募更多美国公民、女性和少数族裔参加研究生课程的目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Abhijit Chatterjee其他文献
The effect of occlusive and unocclusive exposure to xylene and benzene on skin irritation and molecular responses in hairless rats
闭塞和非闭塞接触二甲苯和苯对无毛大鼠皮肤刺激和分子反应的影响
- DOI:
10.1007/s00204-004-0629-1 - 发表时间:
2005-04-13 - 期刊:
- 影响因子:6.1
- 作者:
Abhijit Chatterjee;R. Babu;E. Ahaghotu;M;ip Singh;ip - 通讯作者:
ip
Percutaneous absorption and skin irritation upon low-level prolonged dermal exposure to nonane, dodecane and tetradecane in hairless rats
无毛大鼠低水平长时间皮肤接触壬烷、十二烷和十四烷后的经皮吸收和皮肤刺激
- DOI:
10.1191/0748233704th197oa - 发表时间:
2004-07-01 - 期刊:
- 影响因子:1.9
- 作者:
R. Babu;Abhijit Chatterjee;E. Ahaghotu;Mandip Singh - 通讯作者:
Mandip Singh
TESDA: Transform Enabled Statistical Detection of Attacks in Deep Neural Networks
TESDA:基于变换的深度神经网络攻击统计检测
- DOI:
10.1007/s10994-021-06068-6 - 发表时间:
2021-10-16 - 期刊:
- 影响因子:0
- 作者:
C. Amarnath;Aishwarya H. Balwani;Kwondo Ma;Abhijit Chatterjee - 通讯作者:
Abhijit Chatterjee
Error Resilience in Deep Neural Networks Using Neuron Gradient Statistics
使用神经元梯度统计的深度神经网络的错误恢复能力
- DOI:
10.1109/tcad.2023.3335144 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:2.9
- 作者:
C. Amarnath;Mohamed Mejri;Kwondo Ma;Abhijit Chatterjee - 通讯作者:
Abhijit Chatterjee
Gaussian Control Barrier Functions: Non-Parametric Paradigm to Safety
高斯控制屏障函数:非参数安全范式
- DOI:
10.1109/access.2022.3206372 - 发表时间:
2022-03-29 - 期刊:
- 影响因子:3.9
- 作者:
Mouhyemen Khan;Tatsuya Ibuki;Abhijit Chatterjee - 通讯作者:
Abhijit Chatterjee
Abhijit Chatterjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Abhijit Chatterjee', 18)}}的其他基金
Collaborative Research: An Effective and Efficient Low-Cost Alternate to Cell Aware Test Generation for Cell Internal Defects
协作研究:针对电池内部缺陷的电池感知测试生成有效且高效的低成本替代方案
- 批准号:
2331002 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
CCF: Small: Real-Number Function Encoding Driven Error Resilient Signal Processing and Control: Application to Nonlinear Systems from Adaptive Filters to DNNs
CCF:小型:实数函数编码驱动的误差弹性信号处理和控制:从自适应滤波器到 DNN 的非线性系统应用
- 批准号:
2128419 - 财政年份:2021
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
CCF: Small: Real-Number Function Encoding Driven Error Resilient Signal Processing and Control: Application to Nonlinear Systems from Adaptive Filters to DNNs
CCF:小型:实数函数编码驱动的误差弹性信号处理和控制:从自适应滤波器到 DNN 的非线性系统应用
- 批准号:
2128419 - 财政年份:2021
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
EFFICIENT TESTING AND POST-MANUFACTURE TUNING OF BEAMFORMING MIMO WIRELESS COMMUNICATION SYSTEMS: ALGORITHMS AND INFRASTRUCTURE
波束赋形 MIMO 无线通信系统的高效测试和制造后调整:算法和基础设施
- 批准号:
1815653 - 财政年份:2018
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
S&AS: FND: Real-Time Self-Diagnosis and Correction in Linear and Nonlinear Control of Autonomous Systems Using Encoded State Space Error Signatures
S
- 批准号:
1723997 - 财政年份:2017
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
SaTC: STARSS: Trojan Detection and Diagnosis in Mixed-Signal Systems Using On-The-Fly Learned, Precomputed and Side Channel Tests
SaTC:STARSS:使用动态学习、预计算和侧通道测试的混合信号系统中的特洛伊木马检测和诊断
- 批准号:
1441754 - 财政年份:2014
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research:Cross-Domain Built-In Tuning of Advanced Mixed- Signal Radio-Frequncy Systems-on-Chip For Yield Recovery and Electrical Stress Management
合作研究:先进混合信号射频片上系统的跨域内置调谐,用于良率恢复和电应力管理
- 批准号:
1407542 - 财政年份:2014
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
CCF: Small: Learning Assisted Induced Noise and Error Tolerant Digital and Analog Filters Using Reduced-Distance Codes
CCF:小型:使用缩短距离代码的学习辅助感应噪声和容错数字和模拟滤波器
- 批准号:
1421353 - 财政年份:2014
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
CCF:SMALL:TIMING VARIATION RESILIENT SIGNAL PROCESSING: HARDWARE-ASSISTED CROSS-LAYER ADAPTATION
CCF:SMALL:时序变化弹性信号处理:硬件辅助跨层自适应
- 批准号:
1319783 - 财政年份:2013
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
CIF: Imperfection-Resilient Scalable Digital Signal Processing Algorithms and Architectures Using Significance Driven Computation
CIF:使用重要性驱动计算的不完美弹性可扩展数字信号处理算法和架构
- 批准号:
0916270 - 财政年份:2009
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
相似国自然基金
基于垂直电偶极子源的剩余油探测与动态监测基础与应用方法研究
- 批准号:42274087
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
自动垂直取心底部钻具组合的动力学特性及动态导向控斜机理研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
全生育期夏玉米氮素利用率垂直分布的高光谱定量反演与动态监测
- 批准号:31902118
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于多传感器数据融合的准垂直井眼轨迹动态测量方法研究
- 批准号:
- 批准年份:2019
- 资助金额:25 万元
- 项目类别:青年科学基金项目
基于多传感器数据融合的准垂直井眼轨迹动态测量方法研究
- 批准号:41902320
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Analysis of dynamic characteristics and optimization of shape of rotator for ocean current generation by CFD
CFD分析海流发电转子的动态特性及形状优化
- 批准号:
19K04165 - 财政年份:2019
- 资助金额:
$ 22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EHCS: Dynamic Vertically Integrated Power-Performance-Reliability Modulation in Embedded Digital Signal Processors
EHCS:嵌入式数字信号处理器中的动态垂直集成功率性能可靠性调制
- 批准号:
0834620 - 财政年份:2008
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
Simultaneous Dynamic Measurement of Transcription and Formation Processes of Ultra-anisotropic Cylinder Nanostructures
超各向异性圆柱体纳米结构转录和形成过程的同步动态测量
- 批准号:
18101005 - 财政年份:2006
- 资助金额:
$ 22万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Electron-electron Interaction and Dynamic of Electrons in a Vertically Aligned Double Dot System
垂直排列双点系统中的电子-电子相互作用和电子动力学
- 批准号:
12640311 - 财政年份:2000
- 资助金额:
$ 22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
"A Dynamic Analysis of the Common Use of Network in Public Utility Industries"
《公用事业行业网络共用动态分析》
- 批准号:
11630068 - 财政年份:1999
- 资助金额:
$ 22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)