EAGER: Robust Reasoning using a Geometric Approach to SAT and PSAT
EAGER:使用几何方法进行 SAT 和 PSAT 的稳健推理
基本信息
- 批准号:2152454
- 负责人:
- 金额:$ 9.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The overarching goal of this EAGER project is to develop efficient and reliable methods for autonomous agents to produce plans for their safe operation in complex situations. For example, the development of large-scale unmanned aircraft system operation in urban areas for package delivery depends on such a capability. The fundamental issue is to determine if there is a viable solution in a specific situation; at the present time the complexity of this problem is too high to guarantee that a solution can be found. The team of researchers is developing a lower complexity approach with wide application in artificial intelligence. The project engages student researchers from underrepresented groups in computer science, and the research results are integrated into the classroom through courses like artificial intelligence, theory of computation, and autonomous agent systems.The project provides a new approach to agent planning at the cognitive level. The basic innovation is to convert the satisfiability problem into a geometric setting; in particular, the models of an n-variable logical sentence are viewed as the corners of an n-D hypercube, and interior points assign probabilities to the variables. Each conjunct in the conjunctive normal form sentence reduces the convex feasible solution region. Any non-empty feasible region indicates the existence of a solution to the probabilistic satisfiability problem and can also be probed with linear programming methods in polynomial time to seek an answer to the satisfiability problem. Particular approaches to be explored include: (1) modifications to the interior point method using barrier methods, (2) finding linear programming solutions in a non-Euclidean geometry, (3) applying random rotations to the feasible region to allow coordinate projects to determine if there is a solution, and (4) using Markov Chain Monte Carlo to get a point near a corner. Applications include probabilistic satisfiability inference, reinforcement policy optimization for autonomous agents, and probabilistic temporal logic.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该 EAGER 项目的总体目标是为自主代理开发高效可靠的方法,以制定在复杂情况下安全运行的计划。例如,发展大型无人机系统在城市地区运行包裹投递就依赖于这样的能力。根本问题是确定在特定情况下是否有可行的解决方案;目前这个问题的复杂性太高,无法保证找到解决方案。研究人员团队正在开发一种复杂性较低的方法,可在人工智能领域广泛应用。该项目吸引了来自计算机科学领域代表性不足群体的学生研究人员,并将研究成果通过人工智能、计算理论和自主代理系统等课程融入课堂。该项目为认知层面的代理规划提供了一种新方法。基本创新是将可满足性问题转化为几何设置;特别是,n 变量逻辑句子的模型被视为 n 维超立方体的角,内部点将概率分配给变量。连接范式句子中的每个连接都会减少凸可行解区域。任何非空可行区域都表明存在概率可满足性问题的解,并且也可以在多项式时间内用线性规划方法进行探测,以寻求可满足性问题的答案。需要探索的具体方法包括:(1)使用障碍法对内点法进行修改,(2)在非欧几里得几何中寻找线性规划解决方案,(3)对可行区域应用随机旋转以允许坐标项目确定如果有解,(4)使用马尔可夫链蒙特卡罗得到靠近角点的点。应用包括概率可满足性推理、自主代理的强化策略优化和概率时序逻辑。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Henderson其他文献
MORPHIAS: Molecular Phenotyping Image Analysis System
MORPHIAS:分子表型图像分析系统
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Thomas Henderson;R. Marc;Hao Wang - 通讯作者:
Hao Wang
Thomas Henderson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Henderson', 18)}}的其他基金
CCRI: ENS: Collaborative Research: ns-3 Network Simulation for Next-Generation Wireless
CCRI:ENS:协作研究:下一代无线的 ns-3 网络仿真
- 批准号:
2016379 - 财政年份:2020
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant
Developing an Industrial Maintenance Technician Pathway to an Advanced Technology Degree
开发工业维护技术人员获得高级技术学位的途径
- 批准号:
2000841 - 财政年份:2020
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant
CI-ADDO-EN: Frameworks for ns-3
CI-ADDO-EN:ns-3 框架
- 批准号:
0958139 - 财政年份:2010
- 资助金额:
$ 9.92万 - 项目类别:
Continuing Grant
EAGER: Innate Theories in Cognitive Robotics
EAGER:认知机器人的固有理论
- 批准号:
1021038 - 财政年份:2010
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant
CRI: Collaborative Proposal: Developing the Next-Generation Open-Source Network Simulator (ns-3)
CRI:协作提案:开发下一代开源网络模拟器 (ns-3)
- 批准号:
0551686 - 财政年份:2006
- 资助金额:
$ 9.92万 - 项目类别:
Continuing Grant
CISE Educational Innovation: Simulation Science and Education
CISE教育创新:模拟科学与教育
- 批准号:
9979838 - 财政年份:1999
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant
Acquisition of Computational Steering Instrumentation
收购计算转向仪器
- 批准号:
9512241 - 财政年份:1995
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant
Human/Computer Interface and Intelligent Robotic Control
人机界面与智能机器人控制
- 批准号:
9355041 - 财政年份:1993
- 资助金额:
$ 9.92万 - 项目类别:
Continuing Grant
相似国自然基金
强壮前沟藻共生细菌降解膦酸酯产生促藻效应的分子机制
- 批准号:42306167
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高效率强壮消息鉴别码的分析与设计
- 批准号:61202422
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
基于复合编码脉冲串的水下主动隐蔽性探测新方法研究
- 批准号:61271414
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
半定松弛与非凸二次约束二次规划研究
- 批准号:11271243
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
民航客运网络收益管理若干问题的研究
- 批准号:60776817
- 批准年份:2007
- 资助金额:20.0 万元
- 项目类别:联合基金项目
相似海外基金
CAREER: Robust, Fair, and Culturally Aware Commonsense Reasoning in Natural Language
职业:用自然语言进行稳健、公平和具有文化意识的常识推理
- 批准号:
2339746 - 财政年份:2024
- 资助金额:
$ 9.92万 - 项目类别:
Continuing Grant
NRI: Robust and Efficient Physics-based Learning and Reasoning in Degraded Environments
NRI:退化环境中稳健且高效的基于物理的学习和推理
- 批准号:
2132972 - 财政年份:2022
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant
CAREER: Flexible and Robust Reasoning in Natural Language
职业:灵活而稳健的自然语言推理
- 批准号:
2145280 - 财政年份:2022
- 资助金额:
$ 9.92万 - 项目类别:
Continuing Grant
Robust Learning and Reasoning for Complex Event Forecasting (EVENFLOW)
复杂事件预测的鲁棒学习和推理 (EVENFLOW)
- 批准号:
10042508 - 财政年份:2022
- 资助金额:
$ 9.92万 - 项目类别:
EU-Funded
Enabling rich, open-ended human-robot interaction through robust, advanced multimodal perceptual capabilities for high-level reasoning
通过强大、先进的多模态感知能力进行高级推理,实现丰富、开放式的人机交互
- 批准号:
RGPIN-2019-06047 - 财政年份:2022
- 资助金额:
$ 9.92万 - 项目类别:
Discovery Grants Program - Individual