Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
基本信息
- 批准号:2118953
- 负责人:
- 金额:$ 92.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project investigates a completely new cross-disciplinary concept of “Computational Screening and Surveillance (CSS)” that utilizes edge learning to detect early indicators of diseases, and monitor health changes in both individuals and populations. CSS analyzes and interprets continuous and heterogeneous physical and physiologic sensing-data streams of human subjects to produce real-time information, knowledge, and insights about their health status. The project’s novelty is a data-driven paradigm that revolutionizes the understanding, prediction, intervention, treatment, and management of acute/infectious, chronic physical and psychological diseases. The project’s impacts are enormous social and economic benefits to individuals, organizations, and the healthcare system: early detection, preemptive intervention and management can lead to greatly improved quality of care, and huge savings for multiple diseases each costing hundreds of billions of dollars every year.The investigators design, develop and evaluate principles and solutions for CSS enabled by extreme-scale edge learning spanning four dimensions: data modalities, health conditions and data patterns, Artificial Intelligence/Machine Learning (AI/ML) algorithms and models, and individuals/populations. The design is guided by four principles: exploit scale and heterogeneity, design for uncertainty, privacy as a first-class citizen, and faults and attacks as a norm. The investigators will 1) design AI/ML algorithms for learning data patterns and correlations for diverse health conditions in both individuals and populations at extreme scales; 2) quantify theoretical bounds on the tradeoffs between security, privacy protection, and learning accuracy in order to protect against various attacks on data and models at both the edge and cloud; 3) develop programming abstractions for automated exploration of competing AI/ML methods under uncertainty, and system mechanisms to protect stream processing integrity against sensitive data disclosure and faulty/malicious analytics; and 4) devise neural architectures and accelerators for computation efficiency at the constrained edge, data efficiency using limited training sets, and human efficiency utilizing AutoML.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目研究了“计算筛查和监测(CSS)”这一全新的跨学科概念,利用边缘学习来检测疾病的早期指标,并监测个体和人群的生理传感数据流的健康变化。产生有关他们健康状况的实时信息、知识和见解。该项目的新颖之处在于数据驱动的范例,彻底改变了对健康状况的理解、预测、干预、治疗和管理。该项目对个人、组织和医疗保健系统具有巨大的社会和经济效益:早期发现、先发制人的干预和管理可以大大提高护理质量,并为多个群体节省大量费用。每种疾病每年花费数千亿美元。研究人员设计、开发和评估 CSS 的原理和解决方案,这些原理和解决方案通过跨越四个维度的超大规模边缘学习实现:数据模式、健康状况和数据模式、人工智能/机器学习 (AI) /ML)算法设计遵循四个原则:利用规模和异质性、针对不确定性的设计、作为一等公民的隐私以及作为规范的故障和攻击。研究人员将 1) 设计 AI/ML。用于学习极端规模的个人和人群的不同健康状况的数据模式和相关性的算法2)量化安全性、隐私保护和学习准确性之间权衡的理论界限,以防止对数据和模型的各种攻击;边缘和云; 3) 开发用于在不确定性下自动探索竞争性 AI/ML 方法的编程抽象,以及保护流处理完整性免遭敏感数据泄露和错误/恶意分析的系统机制;4) 设计神经架构和加速器以提高受限边缘的计算效率; 、使用有限训练集的数据效率以及利用 AutoML 的人员效率。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Obtaining Approximately Optimal and Diverse Solutions via Dispersion
通过分散获得近似最优且多样化的解
- DOI:
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Gao, Jie;Goswami, Mayank;C.S., Karthik;Tsai, Meng;Tsai, Shih;Yang, Hao
- 通讯作者:Yang, Hao
Clustering of Trajectories using Non-Parametric Conformal DBSCAN Algorithm
使用非参数共形 DBSCAN 算法对轨迹进行聚类
- DOI:10.1109/ipsn54338.2022.00043
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Wang, Haotian;Gao, Jie;Xie, Minge
- 通讯作者:Xie, Minge
Subspace Differential Privacy
子空间差分隐私
- DOI:10.1609/aaai.v36i4.20315
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Gao, Jie;Gong, Ruobin;Yu, Fang
- 通讯作者:Yu, Fang
Integer Subspace Differential Privacy
整数子空间差分隐私
- DOI:10.48550/arxiv.2212.00936
- 发表时间:2022-12-02
- 期刊:
- 影响因子:0
- 作者:Prathamesh Dharangutte;Jie Gao;Ruobin Gong;Fang
- 通讯作者:Fang
Differentially Private Range Query on Shortest Paths
最短路径上的差分私有范围查询
- DOI:10.1007/978-3-031-38906-1_23
- 发表时间:2022-12-15
- 期刊:
- 影响因子:0
- 作者:Chengyuan Deng;Jie Ying Gao;Jalaj Upadhyay;Chen Wang
- 通讯作者:Chen Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jie Gao其他文献
LLMs as Research Tools: Applications and Evaluations in HCI Data Work
法学硕士作为研究工具:HCI 数据工作中的应用和评估
- DOI:
10.1145/3613905.3636301 - 发表时间:
2024-05-11 - 期刊:
- 影响因子:0
- 作者:
Marianne Aubin Le Quere;Hope Schroeder;Casey R;azzo;azzo;Jie Gao;Ziv Epstein;S. Perrault;David Mimno;Louise Barkhuus;Hanlin Li - 通讯作者:
Hanlin Li
Targeted nanomedicines decorated with antibodies can significantly improve the therapeutic effectiveness of conventional chemotherapeutics or gene therapy in cancer.
用抗体修饰的靶向纳米药物可以显着提高传统化疗或基因疗法在癌症中的治疗效果。
- DOI:
- 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Jie Gao;S. Feng - 通讯作者:
S. Feng
FUZZY SUPPLY CHAIN COORDINATION MECHANISM WITH IMPERFECT QUALITY ITEMS
供应链协调机制模糊,品质项目不完善
- DOI:
10.3846/tede.2019.6620 - 发表时间:
2019-02-19 - 期刊:
- 影响因子:5.9
- 作者:
Shukuan Liu;Jie Gao;Zeshui Xu - 通讯作者:
Zeshui Xu
Quantum information processing through quantum dots in slow-light photonic crystal waveguides
通过慢光光子晶体波导中的量子点进行量子信息处理
- DOI:
10.1016/j.photonics.2008.11.007 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:0
- 作者:
C. Wong;Jie Gao;J. McMillan;F. Sun;R. Bose - 通讯作者:
R. Bose
A socio-demographic examination of the perceived benefits of agroforestry
对农林业感知效益的社会人口统计调查
- DOI:
10.1007/s10457-014-9683-8 - 发表时间:
2014-03-30 - 期刊:
- 影响因子:2.2
- 作者:
Jie Gao;Carla Barbieri;C. Valdivia - 通讯作者:
C. Valdivia
Jie Gao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jie Gao', 18)}}的其他基金
Collaborative Research: 2D ferroelectric nonlinear metasurface holograms
合作研究:二维铁电非线性超表面全息图
- 批准号:
2226875 - 财政年份:2022
- 资助金额:
$ 92.36万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Promoting Social Learning Amid Interference in the Age of Social Media
合作研究:AF:小:在社交媒体时代的干扰下促进社交学习
- 批准号:
2208663 - 财政年份:2022
- 资助金额:
$ 92.36万 - 项目类别:
Standard Grant
Collaborative Research: Infrared Chiral Metasurface Enhanced Vibrational Circular Dichroism Biomolecule Sensing
合作研究:红外手性超表面增强振动圆二色性生物分子传感
- 批准号:
2230069 - 财政年份:2022
- 资助金额:
$ 92.36万 - 项目类别:
Standard Grant
Collaborative Research: Infrared Chiral Metasurface Enhanced Vibrational Circular Dichroism Biomolecule Sensing
合作研究:红外手性超表面增强振动圆二色性生物分子传感
- 批准号:
2230069 - 财政年份:2022
- 资助金额:
$ 92.36万 - 项目类别:
Standard Grant
CRCNS Research Proposal: Modeling Human Brain Development as a Dynamic Multi-Scale Network Optimization Process
CRCNS 研究提案:将人脑发育建模为动态多尺度网络优化过程
- 批准号:
2207440 - 财政年份:2022
- 资助金额:
$ 92.36万 - 项目类别:
Continuing Grant
Collaborative Research: From Brains to Society: Neural Underpinnings of Collective Behaviors Via Massive Data and Experiments
合作研究:从大脑到社会:通过大量数据和实验研究集体行为的神经基础
- 批准号:
2126582 - 财政年份:2021
- 资助金额:
$ 92.36万 - 项目类别:
Continuing Grant
CAREER: Flat Singular Optics: Generation and Detection of Optical Vortex Beams with Plasmonic Metasurfaces in Linear and Nonlinear Regimes
职业:平面奇异光学:在线性和非线性体系中使用等离激元超表面生成和检测光学涡旋光束
- 批准号:
2204163 - 财政年份:2021
- 资助金额:
$ 92.36万 - 项目类别:
Standard Grant
Collaborative Research: From Brains to Society: Neural Underpinnings of Collective Behaviors Via Massive Data and Experiments
合作研究:从大脑到社会:通过大量数据和实验研究集体行为的神经基础
- 批准号:
1939459 - 财政年份:2019
- 资助金额:
$ 92.36万 - 项目类别:
Continuing Grant
CAREER: Flat Singular Optics: Generation and Detection of Optical Vortex Beams with Plasmonic Metasurfaces in Linear and Nonlinear Regimes
职业:平面奇异光学:在线性和非线性体系中使用等离激元超表面生成和检测光学涡旋光束
- 批准号:
1653032 - 财政年份:2017
- 资助金额:
$ 92.36万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Theory and Algorithms for Discrete Curvatures on Network Data from Human Mobility and Monitoring
合作研究:ATD:人体移动和监测网络数据离散曲率的理论和算法
- 批准号:
1737812 - 财政年份:2017
- 资助金额:
$ 92.36万 - 项目类别:
Standard Grant
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
- 批准号:82300430
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
- 批准号:62371157
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向开放域对话系统信息获取的准确性研究
- 批准号:62376067
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316202 - 财政年份:2023
- 资助金额:
$ 92.36万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
- 批准号:
2406572 - 财政年份:2023
- 资助金额:
$ 92.36万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316157 - 财政年份:2023
- 资助金额:
$ 92.36万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316201 - 财政年份:2023
- 资助金额:
$ 92.36万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: LARGE: General-Purpose Scalable Technologies for Fundamental Graph Problems
合作研究:PPoSS:大型:解决基本图问题的通用可扩展技术
- 批准号:
2316233 - 财政年份:2023
- 资助金额:
$ 92.36万 - 项目类别:
Continuing Grant