Collaborative Research: AF: Small: Promoting Social Learning Amid Interference in the Age of Social Media

合作研究:AF:小:在社交媒体时代的干扰下促进社交学习

基本信息

  • 批准号:
    2208663
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Information acquisition is embedded in a social setting. This distorts - or at least changes - the incentives individuals face when they are uncertain about the truth and communicate with others. Social learning, an increasingly impactful topic in the computer science/economics literature, formally studies when and how dispersed and self-interested agents aggregate information. A potential, but unrealized, goal of the social-learning literature is to enable the building of socio-computational systems that promote social learning. A growing volume of literature in social media and computational social science is deeply concerned that, at present, incentives are not aligned with truth-seeking/truth-telling and that discussion is becoming increasingly polarized. This leads to an acrimonious public discourse rife with conflicting information and theories, where the truth is hard to locate. Building on and using theoretical computer science techniques, this project adds to the fundamental understanding of how societies learn. The social learning system itself, with given parameters, can be seen as a computational process. This project considers two interesting perspectives in this family of problems that involve computational complexity and algorithm design: 1) the computational complexity required for agents to best respond or to determine the properties of different systems; 2) considering social learning as a complex system where the models of social interactions, input signals, and self-regulating/evolving nature can be viewed as constraints, and the design parameters can be optimized to encourage social learning towards truth discovery. This work includes the analysis of models with relevant first-order features to learn which conditions are sufficient and necessary for crowds to quickly and reliably converge on the truth in both the sequential social learning and social learning with repeated updating settings. In addition, the project includes design of algorithms and insights to optimize certain parameters, corresponding to platform design choices, to promote fast and robust social learning in each of these settings. A key feature is augmenting the social-learning literature to explicitly consider agents' social embeddedness including their mixed incentives and the reality of polarized environments. Additionally, with carefully crafted empirical research, the project develops models for learning more complex truths amid social pressure.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
信息获取嵌入在社会环境中。 这扭曲了——或者至少改变了——个人在不确定真相并与他人沟通时所面临的激励。社会学习是计算机科学/经济学文献中一个越来越有影响力的话题,它正式研究分散和自利的代理何时以及如何聚合信息。社会学习文献的一个潜在但尚未实现的目标是建立促进社会学习的社会计算系统。越来越多的社交媒体和计算社会科学文献深切关注,目前激励措施与寻求真相/说真话不一致,讨论变得越来越两极分化。 这导致了激烈的公共言论,充满了相互矛盾的信息和理论,很难找到真相。该项目以理论计算机科学技术为基础并使用理论计算机科学技术,增加了对社会如何学习的基本理解。具有给定参数的社会学习系统本身可以被视为一个计算过程。该项目考虑了涉及计算复杂性和算法设计的这一系列问题中的两个有趣的观点:1)代理最佳响应或确定不同系统的属性所需的计算复杂性; 2)将社会学习视为一个复杂的系统,其中社会互动、输入信号和自我调节/进化性质的模型可以被视为约束,并且可以优化设计参数以鼓励社会学习走向真理发现。 这项工作包括对具有相关一阶特征的模型进行分析,以了解在顺序社会学习和重复更新设置的社会学习中,哪些条件是人群快速可靠地收敛于事实的充分和必要条件。此外,该项目还包括算法设计和见解,以优化与平台设计选择相对应的某些参数,以促进在每种环境中快速、稳健的社交学习。 一个关键特征是扩充社会学习文献,以明确考虑主体的社会嵌入性,包括他们的混合激励和两极分化环境的现实。 此外,通过精心设计的实证研究,该项目开发了在社会压力下学习更复杂真相的模型。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluating Stability in Massive Social Networks: Efficient Streaming Algorithms for Structural Balance
评估大规模社交网络的稳定性:实现结构平衡的高效流算法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jie Gao其他文献

LLMs as Research Tools: Applications and Evaluations in HCI Data Work
法学硕士作为研究工具:HCI 数据工作中的应用和评估
Targeted nanomedicines decorated with antibodies can significantly improve the therapeutic effectiveness of conventional chemotherapeutics or gene therapy in cancer.
用抗体修饰的靶向纳米药物可以显着提高传统化疗或基因疗法在癌症中的治疗效果。
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jie Gao;S. Feng
  • 通讯作者:
    S. Feng
FUZZY SUPPLY CHAIN COORDINATION MECHANISM WITH IMPERFECT QUALITY ITEMS
供应链协调机制模糊,品质项目不完善
Quantum information processing through quantum dots in slow-light photonic crystal waveguides
通过慢光光子晶体波导中的量子点进行量子信息处理
A socio-demographic examination of the perceived benefits of agroforestry
对农林业感知效益的社会人口统计调查
  • DOI:
    10.1007/s10457-014-9683-8
  • 发表时间:
    2014-03-30
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Jie Gao;Carla Barbieri;C. Valdivia
  • 通讯作者:
    C. Valdivia

Jie Gao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jie Gao', 18)}}的其他基金

Collaborative Research: 2D ferroelectric nonlinear metasurface holograms
合作研究:二维铁电非线性超表面全息图
  • 批准号:
    2226875
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: Infrared Chiral Metasurface Enhanced Vibrational Circular Dichroism Biomolecule Sensing
合作研究:红外手性超表面增强振动圆二色性生物分子传感
  • 批准号:
    2230069
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: Infrared Chiral Metasurface Enhanced Vibrational Circular Dichroism Biomolecule Sensing
合作研究:红外手性超表面增强振动圆二色性生物分子传感
  • 批准号:
    2230069
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
CRCNS Research Proposal: Modeling Human Brain Development as a Dynamic Multi-Scale Network Optimization Process
CRCNS 研究提案:将人脑发育建模为动态多尺度网络优化过程
  • 批准号:
    2207440
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Collaborative Research: From Brains to Society: Neural Underpinnings of Collective Behaviors Via Massive Data and Experiments
合作研究:从大脑到社会:通过大量数据和实验研究集体行为的神经基础
  • 批准号:
    2126582
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
  • 批准号:
    2118953
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
CAREER: Flat Singular Optics: Generation and Detection of Optical Vortex Beams with Plasmonic Metasurfaces in Linear and Nonlinear Regimes
职业:平面奇异光学:在线性和非线性体系中使用等离激元超表面生成和检测光学涡旋光束
  • 批准号:
    2204163
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: From Brains to Society: Neural Underpinnings of Collective Behaviors Via Massive Data and Experiments
合作研究:从大脑到社会:通过大量数据和实验研究集体行为的神经基础
  • 批准号:
    1939459
  • 财政年份:
    2019
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
CAREER: Flat Singular Optics: Generation and Detection of Optical Vortex Beams with Plasmonic Metasurfaces in Linear and Nonlinear Regimes
职业:平面奇异光学:在线性和非线性体系中使用等离激元超表面生成和检测光学涡旋光束
  • 批准号:
    1653032
  • 财政年份:
    2017
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Theory and Algorithms for Discrete Curvatures on Network Data from Human Mobility and Monitoring
合作研究:ATD:人体移动和监测网络数据离散曲率的理论和算法
  • 批准号:
    1737812
  • 财政年份:
    2017
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant

相似国自然基金

剪接因子U2AF1突变在急性髓系白血病原发耐药中的机制研究
  • 批准号:
    82370157
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
间充质干细胞微粒通过U2AF1负调控pDC活化改善系统性红斑狼疮的机制研究
  • 批准号:
    82302029
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
AF9通过ARRB2-MRGPRB2介导肠固有肥大细胞活化促进重症急性胰腺炎发生MOF的研究
  • 批准号:
    82300739
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
circPOLB-MYC-U2AF2正反馈环路上调FSCN1促进舌鳞状细胞癌进展的作用研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
tsRNA-14765结合U2AF2抑制巨噬细胞自噬调节铁死亡对动脉粥样硬化的影响及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342245
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
  • 批准号:
    2347321
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
  • 批准号:
    2335412
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402284
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Small: New Connections between Optimization and Property Testing
合作研究:AF:小型:优化和性能测试之间的新联系
  • 批准号:
    2402572
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了