Collaborative Research: SHF: Small: Towards Robust Deep Learning Computing on GPUs
合作研究:SHF:小型:在 GPU 上实现稳健的深度学习计算
基本信息
- 批准号:2114519
- 负责人:
- 金额:$ 16.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Graphics processing units (GPU) have become one of the most promising computing engines in many application domains such as scientific simulations and deep learning. With the massive parallel processing power provided by GPUs, most of the state-of-the-art server and edge systems employ GPUs as the core computing engines for deep-learning model training and inference. As the performance of deep learning models becomes one of the most important delimiters that determines market revenue of the model creators and the convenience of daily lives of model consumers, it is critical to enforce reliable and robust deep-learning computation. This project aims to explore the challenges and opportunities to address the reliability and privacy implications of GPU computing as a deep-learning accelerator and design lightweight protection schemes.The technical aims of this project are divided into three thrusts. The first thrust explores and evaluates possible vulnerabilities and their impact on GPU-based deep-learning computing. The second thrust tackles the vulnerabilities at the compute-unit level by redesigning GPU building blocks, such as new scheduling algorithms and activation acceleration logic. The third thrust explores selective integrity protection mechanisms in communication channels and memory subsystems to transfer data between the CPU and GPU without imposing significant performance overhead. The proposed solutions will mitigate architectural and system vulnerabilities in GPU-based deep learning computing, which will enable the deep learning algorithm developers to focus more on performance improvement and technological advancement, and the consumers to use deep learning-based cognitive products without privacy concerns. The findings of this research will be integrated into undergraduate and graduate courses as well as various outreach activities on K-12 education, and publicly shared through open-source repositories.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图形处理单元(GPU)已成为科学模拟和深度学习等许多应用领域最有前途的计算引擎之一。凭借 GPU 提供的大规模并行处理能力,大多数最先进的服务器和边缘系统都采用 GPU 作为深度学习模型训练和推理的核心计算引擎。随着深度学习模型的性能成为决定模型创建者的市场收入和模型消费者日常生活便利性的最重要的限制因素之一,执行可靠和鲁棒的深度学习计算至关重要。该项目旨在探索解决 GPU 计算作为深度学习加速器的可靠性和隐私影响的挑战和机遇,并设计轻量级保护方案。该项目的技术目标分为三个主旨。第一个重点是探索和评估可能的漏洞及其对基于 GPU 的深度学习计算的影响。第二个重点是通过重新设计 GPU 构建块(例如新的调度算法和激活加速逻辑)来解决计算单元级别的漏洞。第三个重点探索通信通道和内存子系统中的选择性完整性保护机制,以便在 CPU 和 GPU 之间传输数据,而不会造成显着的性能开销。所提出的解决方案将缓解基于GPU的深度学习计算的架构和系统漏洞,使深度学习算法开发人员能够更加关注性能改进和技术进步,并使消费者能够使用基于深度学习的认知产品而无需担心隐私问题。这项研究的结果将被纳入本科生和研究生课程以及 K-12 教育的各种推广活动中,并通过开源存储库公开共享。该奖项反映了 NSF 的法定使命,并通过使用评估结果被认为值得支持。基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nima Karimian其他文献
On the vulnerability of ECG verification to online presentation attacks
心电图验证对在线演示攻击的脆弱性研究
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Nima Karimian;D. Woodard;Domenic Forte - 通讯作者:
Domenic Forte
BLOcKeR: A Biometric Locking Paradigm for IoT and the Connected Person
BLOCKE:物联网和互联人员的生物识别锁定范例
- DOI:
10.1007/s41635-021-00121-5 - 发表时间:
2021-10-25 - 期刊:
- 影响因子:0
- 作者:
Sumaiya Shomaji;Zimu Guo;F. Ganji;Nima Karimian;D. Woodard;Domenic Forte - 通讯作者:
Domenic Forte
DRAM-Based Intrinsic Physically Unclonable Functions for System-Level Security and Authentication
基于 DRAM 的固有物理不可克隆功能,用于系统级安全性和身份验证
- DOI:
10.1109/tvlsi.2016.2606658 - 发表时间:
2017-03-01 - 期刊:
- 影响因子:2.8
- 作者:
Fatemeh Tehranipoor;Nima Karimian;Wei Yan;J. Ch;y;y - 通讯作者:
y
Unlock Your Heart: Next Generation Biometric in Resource-Constrained Healthcare Systems and IoT
解锁您的心:资源有限的医疗保健系统和物联网中的下一代生物识别技术
- DOI:
10.1109/access.2019.2910753 - 发表时间:
2019-04-12 - 期刊:
- 影响因子:3.9
- 作者:
Nima Karimian;M. Tehranipoor;D. Woodard;Domenic Forte - 通讯作者:
Domenic Forte
Leveraging Deep CNN and Transfer Learning for Side-Channel Attack
利用深度 CNN 和迁移学习进行侧通道攻击
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Amit Garg;Nima Karimian - 通讯作者:
Nima Karimian
Nima Karimian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nima Karimian', 18)}}的其他基金
CRII: SaTC: Physical Side-Channel Attacks in Biometric System
CRII:SaTC:生物识别系统中的物理侧信道攻击
- 批准号:
2302084 - 财政年份:2022
- 资助金额:
$ 16.02万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Towards Robust Deep Learning Computing on GPUs
合作研究:SHF:小型:在 GPU 上实现稳健的深度学习计算
- 批准号:
2301940 - 财政年份:2022
- 资助金额:
$ 16.02万 - 项目类别:
Standard Grant
CRII: SaTC: Physical Side-Channel Attacks in Biometric System
CRII:SaTC:生物识别系统中的物理侧信道攻击
- 批准号:
2104520 - 财政年份:2021
- 资助金额:
$ 16.02万 - 项目类别:
Standard Grant
CRII: SaTC: Physical Side-Channel Attacks in Biometric System
CRII:SaTC:生物识别系统中的物理侧信道攻击
- 批准号:
2104520 - 财政年份:2021
- 资助金额:
$ 16.02万 - 项目类别:
Standard Grant
相似国自然基金
面向5G通信的超高频FBAR耗散机理和耗散稳定性研究
- 批准号:12302200
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
- 批准号:82302939
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
宽运行范围超高频逆变系统架构拓扑与调控策略研究
- 批准号:52377175
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
超高频同步整流DC-DC变换器效率优化关键技术研究
- 批准号:62301375
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
强震动环境下10-100Hz超高频GNSS误差精细建模及监测应用研究
- 批准号:42274025
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 16.02万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 16.02万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 16.02万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 16.02万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402805 - 财政年份:2024
- 资助金额:
$ 16.02万 - 项目类别:
Standard Grant