The functional and adaptive roles of RNA recoding
RNA重编码的功能和适应性作用
基本信息
- 批准号:10723394
- 负责人:
- 金额:$ 12.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AcclimatizationAffectAmino Acid SubstitutionAspergillusAspergillus nidulansBioinformaticsBiological AssayBiologyCarrier ProteinsCell physiologyCephalopodaCodeCodon NucleotidesComplexCuesDNADNA Polymerase IIDNA RepairDNA Repair GeneDNA biosynthesisDNA-Directed DNA PolymeraseDataDevelopmentDevelopment PlansDynein ATPaseEarly EndosomeEnvironmentEpigenetic ProcessExposure toFungal RNAGeneticGenomicsHomologous GeneHumanIn VitroIntracellular TransportKinesinLabelMapsMentorsMessenger RNAMicroscopeMicrotubulesMiningMoldsMolecularMotorMutagenesisMutationNeurosporaNeurospora crassaOceansOrganismPhasePhenotypePhysiologicalPolymerasePrimer ExtensionPropertyProteinsPublishingRNARNA EditingRecombinantsRegulationReporterResearchRoleSeawaterSecretory VesiclesSiteSquidTemperatureTestingTissuesTrainingVariantWorkYeastscareercareer developmentcell motilitycell typeepigenetic regulationexperimental studyfungusgenetic informationin vivointerestmutantmutation assaynovelprogramsprotein aminoacid sequenceprotein complexprotein functionresponsescreeningsingle moleculesuccesssymposiumtraffickingtranscriptome sequencing
项目摘要
PROJECT SUMMARY
Organisms use a variety of molecular mechanisms to adapt to their environments. RNA editing occurs
widely across organisms and generates non-synonymous codon changes in mRNAs, thereby altering the amino
acid sequence of proteins. In cephalopods and fungi, this ‘recoding’ generates incredible diversity in proteins
across most cellular processes. However, the functions of RNA recoding in these organisms are largely
unknown. How is RNA recoding used to support physiological needs and facilitate adaptation? The research
proposed here investigates how cephalopod and fungal RNA recoding regulates the function of proteins involved
in two core cellular processes: microtubule-based transport and DNA replication and repair. This work will
illuminate how RNA recoding modulates protein function to support phenotypic plasticity and adaptation and will
advance our understanding of the regulation and functions of highly conserved cellular machineries.
In Aim 1, Dr. Rangan will investigate how RNA recoding diversifies the function of microtubule motor
protein complexes. In the K99 phase, she will evaluate the effects of RNA recoding on dynein and kinesin motor
complexes using in vivo cargo transport assays and single-molecule motility assays. She will also investigate
how RNA recoding of motor proteins is coordinated at different temperatures in squid to facilitate transport.
In Aim 2, Dr. Rangan will investigate how RNA recoding alters the function of DNA replication and repair
proteins. In the K99 phase, she will characterize the effects of RNA recoding on DNA polymerases epsilon and
zeta using assays for mutation rate, fidelity, and processivity. In the R00 phase, she will evaluate how
temperature-dependent recoding of DNA polymerases alters function and extend this characterization to other
proteins involved in DNA replication and repair.
In Aim 3, Dr. Rangan will explore how RNA recoding of DNA replication machinery influences genomic
mutation rate and bias in the filamentous fungus Neurospora crassa. In the K99 phase, she will use RNA-seq to
evaluate temperature-dependent changes in RNA editing in Neurospora ascospores. During the R00 phase, she
will perform mutation accumulation experiments with recoding site mutants and wild type fungi to elucidate the
role of RNA recoding in mutagenesis.
Dr. Rangan is committed to developing an independent research program centered around investigating
how RNA editing in diverse organisms supports phenotypic plasticity and adaptation. To facilitate her transition
to independence, she will attend diverse scientific conferences and participate in UCSD classes on topics of
career development and lab management. She will receive guidance and support from her mentoring committee
and her primary mentor, Sam Reck-Peterson. This development plan, combined with training in bioinformatics
and computational genomics (with Ludmil Alexandrov, UC San Diego) as well as Neurospora biology and
genetics (with Katherine Borkovich, UC Riverside) will prepare her for success in an independent career.
项目摘要
生物体使用各种分子机制来适应其环境。 RNA编辑发生
跨生物体广泛,并在mRNA中产生非同义密码子变化,从而改变氨基
蛋白质的酸序列。在头足类和真菌中,这种“重新编码”产生了令人难以置信的蛋白质多样性
在大多数细胞过程中。但是,在这些生物中重新编码RNA的功能在很大程度上是
未知。 RNA如何用于支持身体需求并促进适应?研究
此处提出的调查了头足类和真菌RNA如何调节涉及的蛋白质的功能
在两个核心细胞过程中:基于微管的运输以及DNA复制和修复。这项工作将
阐明RNA重新编码如何调节蛋白质功能以支持表型可塑性和适应性,并将
促进我们对高度保守的细胞机械的调节和功能的理解。
在AIM 1中,Rangan博士将研究RNA重新编码如何使微管电机的功能多样化
蛋白质复合物。在K99阶段,她将评估RNA重新编码对Dynein和动力蛋白电动机的影响
使用体内货物传输测定法和单分子运动测定法。她还将调查
运动蛋白的RNA如何在不同温度下在鱿鱼中协调以促进运输。
在AIM 2中,Rangan博士将研究RNA重新编码如何改变DNA复制和修复的功能
蛋白质。在K99阶段,她将表征RNA重新编码对DNA聚合酶Epsilon和
使用分析的突变率,保真度和加工性的Zeta。在R00阶段,她将评估
DNA聚合酶的温度依赖性重现改变了功能,并将此表征扩展到其他
参与DNA复制和修复的蛋白质。
在AIM 3中,Rangan博士将探索RNA重新复制机制如何影响基因组
丝状真菌神经孢子骨的突变率和偏差。在K99阶段,她将使用RNA-Seq到
评估神经孢子孢子中RNA编辑的温度依赖性变化。在R00阶段,她
将使用重新编码位点突变体和野生型真菌进行突变积累实验,以阐明
RNA在诱变中的作用。
Rangan博士致力于制定以调查为中心的独立研究计划
RNA在潜水生物体中的编辑如何支持表型可塑性和适应性。促进她的过渡
为了独立,她将参加多元化的科学会议,并参加UCSD课程
职业发展和实验室管理。她将获得心理委员会的指导和支持
和她的主要导师萨姆·莱克·佩特森(Sam Reck-Peterson)。该开发计划与生物信息学培训相结合
和计算基因组学(与Ludmil Alexandrov,UC圣地亚哥)以及Neurospora生物学和
遗传学(与凯瑟琳·博科维奇(Katherine Borkovich),加州大学里弗赛德(UC Riverside)一起)将为她在独立职业中的成功做好准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kavita Rangan其他文献
Kavita Rangan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
优先流对中俄原油管道沿线多年冻土水热稳定性的影响机制研究
- 批准号:42301138
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
开放空间内部特征对公共生活行为的复合影响效应与使用者感知机理研究
- 批准号:52308052
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
市场公平竞争与企业发展:指标测度、影响机理与效应分析
- 批准号:72373155
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
气候变暖对青藏高原高寒草甸土壤病毒多样性和潜在功能的影响
- 批准号:32301407
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高温胁迫交叉锻炼对梭梭幼苗耐旱性影响的分子机理研究
- 批准号:32360079
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 12.44万 - 项目类别:
Sodium channel mutations as a possible cause for primary dysautonomia
钠通道突变可能是原发性自主神经功能障碍的原因
- 批准号:
10586393 - 财政年份:2023
- 资助金额:
$ 12.44万 - 项目类别:
Small Molecule Therapeutics for Sickle Cell Anemia
镰状细胞性贫血的小分子疗法
- 批准号:
10601679 - 财政年份:2023
- 资助金额:
$ 12.44万 - 项目类别:
Prevent IgM MGUS Progression by Targeting the Driver Mutation
通过针对驱动突变来预防 IgM MGUS 进展
- 批准号:
10745013 - 财政年份:2023
- 资助金额:
$ 12.44万 - 项目类别:
Investigating the role of an EIF2B3 variant as an Alzheimer's disease risk modifier
研究 EIF2B3 变体作为阿尔茨海默病风险调节剂的作用
- 批准号:
10680062 - 财政年份:2023
- 资助金额:
$ 12.44万 - 项目类别: