Collaborative Research: From Quantum Droplets & Spinor Solitons to Vortex Knots & Topological States: Beyond the Standard Mean-Field in Atomic BECs

合作研究:来自量子液滴

基本信息

  • 批准号:
    2110030
  • 负责人:
  • 金额:
    $ 22.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

The realm of Bose-Einstein condensates (BECs) was originally proposed as a curious feature of the statistical properties of atomic particles with integer spin by Bose and Einstein in the 1920's. This consisted of the condensation of the excited states particles into the ground state of the system and the formation of a macroscopic, coherent “super-wave” therein, allowing the study and observation of quantum mechanical properties beyond microscopic scales. However, the temperatures needed for its experimental realization were so low that it took about 70 years for E.A. Cornell, W. Ketterle, and C.E. Wieman to realize BECs in the lab. The importance of this feat was recognized only a few years later via the 2001 Nobel Prize in Physics. This has, in turn, enabled a pristine platform where numerous exciting features of nonlinear dynamics of waves and coherent structures can be studied and experimentally observed. Importantly, these coherent structures are also of wide applicability in numerous other areas of physics including, most notably, nonlinear optics, plasma physics, and water waves. Within atomic physics, BECs have also been fundamental toward the study of remarkable quantum features such as superconductivity and superfluidity and, in that capacity, they have been front and center toward the experimental discoveries connected to the vortices and their lattices cited in the 2003 Nobel Prize in Physics and the topological phases and their transitions associated with the 2016 Nobel Prize in Physics. The aim of this project is to advance the state-of-the-art at this exciting nexus of atomic physics theory, physical BEC experiments, applied mathematical analysis, and the forefront of scientific computing, while at the same time training a new generation of scientists and mathematicians at this scientific interface and transcending disciplinary boundaries. In line with the past trajectory of the PIs, an emphasis on the diversity, equity and inclusion of under-represented groups will be sought within this research effort.More concretely, the principal thrust of the present project consists of the study of non-trivial extensions of standard BEC settings. In particular, the main axes of the proposal consider the following themes. (1) Two-component mutually attractive BECs that allow, through quantum corrections and the famous Lee-Huang-Yang (LHY) contribution, for the highly timely formation of so-called quantum droplets. The key realization for such droplets is that their emergence stems from the interplay between repulsive mean-field and attractive beyond-mean-field contributions. (2) Three (F =1) and five (F=2) spin component settings supporting symbiotic (dark-antidark and dark-bright) solitary wave structures with unprecedented integrable or weakly non-integrable properties. (3) 3D vortex knot structures in one and multi-component/spinor settings. Vortex knots constitute one of the most elusive types of vortical structures for which limited experimental and theoretical analysis exists. The PIs will also explore in the spinor settings complex non-trivial topological patterns such as Alice rings and Dirac monopoles. (4) Topologically nontrivial toroidal trapping settings, where the interplay of the intrinsic metric and curvature of the system with the effective nonlinearity can yield unprecedented coherent structures and dynamics thereof. More broadly within this theme, the PIs will study nonlinear waves such as solitons and vortices confined on different types of curved surfaces. This ambitious program should push the boundaries of the state-of-the-art mean-field-theoretic understanding, offering numerous beyond-mean-field insights and elucidating their range of validity as well as the interplay of nonlinearity with quantum, as well as thermodynamic effects.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
玻色-爱因斯坦凝聚体(BEC)领域最初是由玻色和爱因斯坦在 1920 年代提出的,它是具有整数自旋的原子粒子的统计特性的一个奇怪特征,它将激发态粒子凝聚成基态。系统并在其中形成宏观的、相干的“超级波”,允许研究和观察微观尺度之外的量子力学特性。然而,其实验实现所需的温度是。如此之低,以至于 E.A. Cornell、W. Ketterle 和 C.E. Wieman 花了大约 70 年时间才在实验室中实现了 BEC。仅在几年后,这一成就的重要性就通过 2001 年诺贝尔物理学奖得到了认可。反过来,启用了一个原始平台,可以在其中研究和实验观察波的非线性动力学和相干结构的许多令人兴奋的特征,重要的是,这些相干结构在物理的许多其他领域也具有广泛的适用性。最值得注意的是,在原子物理学中,BEC 也是研究超导性和超流性等显着量子特性的基础,并且在这一方面,它们一直处于研究的前沿和中心。 2003 年诺贝尔物理学奖中引用的与涡流及其晶格相关的实验发现以及 2016 年诺贝尔物理学奖中引用的拓扑相及其转变该项目的目标。旨在推进原子物理理论、物理 BEC 实验、应用数学分析和科学计算前沿这一令人兴奋的联系的最先进水平,同时在这方面培训新一代科学家和数学家与 PI 过去的发展轨迹一致,本研究工作将强调多样性、公平性和代表性不足群体的包容性。更具体地说,本项目的主要目标包括研究的特别是,该提案的主轴考虑了以下主题:(1)允许通过量子校正和著名的 Lee-Huang-Yang(LHY)的两部分相互吸引的 BEC。贡献,对于所谓的量子液滴的高度及时形成是它们的出现源于排斥平均场和吸引的超平均场贡献之间的相互作用(2)三。 (F =1) 和五种 (F=2) 自旋分量设置支持共生(暗-反暗和暗-亮)孤立波结构,具有前所未有的可积或弱不可积性质 (3) 一种和多种 3D 涡旋结结构。 -分量/旋量设置。涡结是最难以捉摸的涡旋结构类型之一,PI 也将在旋量设置复合体中进行探索。非平凡的拓扑模式,例如爱丽丝环和狄拉克单极子(4)拓扑非平凡的环形俘获设置,其中系统的固有度量和曲率与有效非线性的相互作用可以产生空相干结构及其更广泛的动力学。在这个主题中,PI 将研究限制在不同类型曲面上的非线性波,例如孤子和涡旋,这一雄心勃勃的计划应该会突破最先进的技术界限。平均场理论的理解,提供了许多超越平均场的见解,并阐明了其有效性范围以及非线性与量子以及热力学效应的相互作用。该奖项反映了 NSF 的法定使命,并被认为值得支持通过使用基金会的智力优点和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stability and dynamics across magnetic phases of vortex-bright type excitations in spinor Bose-Einstein condensates
旋量玻色-爱因斯坦凝聚态涡亮型激发磁相的稳定性和动力学
  • DOI:
    10.1103/physreva.107.013313
  • 发表时间:
    2021-09-15
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    G. Katsimiga;S. Mistakidis;K. Mukherjee;P. Kevrekidis;P. Schmelcher
  • 通讯作者:
    P. Schmelcher
Solitary wave billiards
孤波台球
  • DOI:
    10.1103/physreve.107.034217
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Cuevas;Kevrekidis, Panayotis G.;Zhang, Hong
  • 通讯作者:
    Zhang, Hong
Efficient manipulation of Bose–Einstein Condensates in a double-well potential
双势阱中玻色爱因斯坦凝聚的高效操控
Statistical mechanics of one-dimensional quantum droplets
一维量子液滴的统计力学
  • DOI:
    10.1103/physreva.104.033316
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Mithun, T.;Mistakidis, S. I.;Schmelcher, P.;Kevrekidis, P. G.
  • 通讯作者:
    Kevrekidis, P. G.
Theoretical and numerical evidence for the potential realization of the Peregrine soliton in repulsive two-component Bose-Einstein condensates
在排斥性二元玻色-爱因斯坦凝聚中实现游隼孤子的潜在实现的理论和数值证据
  • DOI:
    10.1103/physreva.105.053306
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Romero;Katsimiga, G. C.;Mistakidis, S. I.;Prinari, B.;Biondini, G.;Schmelcher, P.;Kevrekidis, P. G.
  • 通讯作者:
    Kevrekidis, P. G.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Panayotis Kevrekidis其他文献

Panayotis Kevrekidis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Panayotis Kevrekidis', 18)}}的其他基金

Collaborative Research: Collapse, Rogue Waves, and their Applications: From Theory to Computation and Beyond
合作研究:塌陷、异常波浪及其应用:从理论到计算及其他
  • 批准号:
    2204702
  • 财政年份:
    2022
  • 资助金额:
    $ 22.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Collapse, Rogue Waves, and their Applications: From Theory to Computation and Beyond
合作研究:塌陷、异常波浪及其应用:从理论到计算及其他
  • 批准号:
    2204702
  • 财政年份:
    2022
  • 资助金额:
    $ 22.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Stability of Nonlinear Wave Structures in Lattices
合作研究:晶格中非线性波结构的稳定性
  • 批准号:
    1809074
  • 财政年份:
    2018
  • 资助金额:
    $ 22.12万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Non-Hamiltonian Wave Dynamics in Atomic & Optical Models
OP:合作研究:原子中的非哈密尔顿波动力学
  • 批准号:
    1602994
  • 财政年份:
    2016
  • 资助金额:
    $ 22.12万
  • 项目类别:
    Continuing Grant
Collaborative Research: New Directions in Atomic Bose-Einstein Condensates
合作研究:原子玻色-爱因斯坦凝聚态的新方向
  • 批准号:
    1312856
  • 财政年份:
    2013
  • 资助金额:
    $ 22.12万
  • 项目类别:
    Standard Grant
DynSyst_Special_Topics:Collaborative Research: Fundamental and Applied Dynamics of Granular Crystals: Disorder, Localization and Energy Harvesting
DynSyst_Special_Topics:合作研究:粒状晶体的基础和应用动力学:无序、局域化和能量收集
  • 批准号:
    1000337
  • 财政年份:
    2010
  • 资助金额:
    $ 22.12万
  • 项目类别:
    Standard Grant
CAREER: Solitons in Bose-Einstein Condensates: Generation, Manipulation and Pattern Formation
职业:玻色-爱因斯坦凝聚中的孤子:生成、操纵和模式形成
  • 批准号:
    0349023
  • 财政年份:
    2004
  • 资助金额:
    $ 22.12万
  • 项目类别:
    Standard Grant
Discrete Solitons: Methods, Theory and Applications
离散孤子:方法、理论和应用
  • 批准号:
    0204585
  • 财政年份:
    2002
  • 资助金额:
    $ 22.12万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于任意精度计算架构的量子信息处理算法硬件加速技术研究
  • 批准号:
    62304037
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
量子时空性质和黑洞信息丢失问题的研究
  • 批准号:
    12375057
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于原位动态强共价耦合策略的分子催化剂/量子点复合体构筑及其水系光催化CO2还原研究
  • 批准号:
    22305037
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
环回差分相位量子密钥分发协议的实际安全性研究
  • 批准号:
    12304563
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非厄米量子映射系统的非时序关联子研究
  • 批准号:
    12365002
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
  • 批准号:
    2344658
  • 财政年份:
    2024
  • 资助金额:
    $ 22.12万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336135
  • 财政年份:
    2024
  • 资助金额:
    $ 22.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2423960
  • 财政年份:
    2024
  • 资助金额:
    $ 22.12万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336136
  • 财政年份:
    2024
  • 资助金额:
    $ 22.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
  • 批准号:
    2344659
  • 财政年份:
    2024
  • 资助金额:
    $ 22.12万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了