Collaborative Research: New Directions in Atomic Bose-Einstein Condensates
合作研究:原子玻色-爱因斯坦凝聚态的新方向
基本信息
- 批准号:1312856
- 负责人:
- 金额:$ 6.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of this proposal is to explore a number of novel, emerging directions in the context of atomic Bose-Einstein condensates (BECs). The project will extend the recent collaborative work of the PIs on the theme of vortex dynamics in trapped condensates. There, we will explore both connections with experimental results obtained by a collaborating experimental group at Amherst College and ones with other areas of mathematics and physics. These include most notably the spectral theory of such nonlinear coherent states, structural phase transitions thereof, reductions to particle-based dynamical models with interesting nonlinear bifurcation phenomena, and computational tools to monitor the existence, stability and dynamics of vortex clusters. Also, a multi-component generalization of these themes will be considered in the recently established direction of spin-orbit coupled BECs. These contain a more complex operator structure within the nonlinear problem, with a linear part featuring both a dispersive (Laplacian) and a Dirac-like part and the interplay of these terms and their impact on nonlinear states such as dark or bright solitons and vortices will be studied. The results in this direction will be compared to ongoing experiments by a collaborating experimental group at Washington State University. This research is expected to provide a new generation of both theoretical and computational tools for studying nonlinear coherent structures with a particular view towards the pristine atomic physics setup of Bose-Einstein condensates. Furthermore, the theoretical/mathematical tools developed here will bear broader impacts towards areas such as spectral theory and nonlinear ordinary and partial differential equations, among others. It is also envisioned that our findings will create connections with a number of areas of Physics such as Fluid Dynamics, Nonlinear Optics and Statistical Mechanics (of Phase Transitions). On the other hand, the developed computational tools will explore the interface between numerical bifurcation theory, dynamical system and even Monte-Carlo/Molecular Dynamics techniques and their potential use for the physical system at hand. Importantly, the research will be a genuine synergy in truly Applied Mathematics, involving not only the development of theoretical methods and computational techniques, but also their direct connection with physical experiments. Finally, the project will be critically focused on sustaining a dynamic and multi-disciplinary team with a strong and diverse core of graduate students and hence will be consistently geared towards having a significant set of broader impacts. The relevant research will be disseminated via high quality journal publications both in Mathematics and in Physics and will be presented at Nonlinear Science and Mathematical Physics conferences both in the US and abroad.
该提案的目的是在原子玻色-爱因斯坦凝聚体(BEC)的背景下探索一些新颖的新兴方向。该项目将扩展 PI 最近在滞留凝结水涡动力学主题上的合作工作。在那里,我们将探索与阿默斯特学院合作实验小组获得的实验结果以及与数学和物理其他领域的实验结果的联系。其中最值得注意的是这种非线性相干态的谱理论、其结构相变、具有有趣的非线性分岔现象的基于粒子的动力学模型的简化,以及用于监测涡旋簇的存在、稳定性和动力学的计算工具。此外,在最近建立的自旋轨道耦合 BEC 方向中,还将考虑这些主题的多组件概括。这些在非线性问题中包含更复杂的算子结构,线性部分具有色散(拉普拉斯)和类狄拉克部分,这些项的相互作用及其对非线性状态(例如暗或亮孤子和涡旋)的影响将被研究。这个方向的结果将与华盛顿州立大学合作实验小组正在进行的实验进行比较。 这项研究预计将为研究非线性相干结构提供新一代的理论和计算工具,特别是针对玻色-爱因斯坦凝聚体的原始原子物理设置。此外,这里开发的理论/数学工具将对谱理论、非线性常微分方程和偏微分方程等领域产生更广泛的影响。预计我们的研究结果将与流体动力学、非线性光学和统计力学(相变)等许多物理学领域建立联系。另一方面,开发的计算工具将探索数值分岔理论、动力系统甚至蒙特卡罗/分子动力学技术之间的接口及其在当前物理系统中的潜在用途。 重要的是,这项研究将是真正应用数学的真正协同作用,不仅涉及理论方法和计算技术的发展,而且涉及它们与物理实验的直接联系。最后,该项目将重点关注维持一支充满活力的多学科团队,该团队拥有强大且多元化的研究生核心,因此将始终致力于产生一系列重要的更广泛的影响。相关研究将通过数学和物理学领域的高质量期刊出版物进行传播,并将在美国和国外的非线性科学和数学物理会议上发表。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Panayotis Kevrekidis其他文献
Panayotis Kevrekidis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Panayotis Kevrekidis', 18)}}的其他基金
Collaborative Research: Collapse, Rogue Waves, and their Applications: From Theory to Computation and Beyond
合作研究:塌陷、异常波浪及其应用:从理论到计算及其他
- 批准号:
2204702 - 财政年份:2022
- 资助金额:
$ 6.5万 - 项目类别:
Standard Grant
Collaborative Research: Collapse, Rogue Waves, and their Applications: From Theory to Computation and Beyond
合作研究:塌陷、异常波浪及其应用:从理论到计算及其他
- 批准号:
2204702 - 财政年份:2022
- 资助金额:
$ 6.5万 - 项目类别:
Standard Grant
Collaborative Research: From Quantum Droplets & Spinor Solitons to Vortex Knots & Topological States: Beyond the Standard Mean-Field in Atomic BECs
合作研究:来自量子液滴
- 批准号:
2110030 - 财政年份:2021
- 资助金额:
$ 6.5万 - 项目类别:
Standard Grant
Collaborative Research: Stability of Nonlinear Wave Structures in Lattices
合作研究:晶格中非线性波结构的稳定性
- 批准号:
1809074 - 财政年份:2018
- 资助金额:
$ 6.5万 - 项目类别:
Standard Grant
OP: Collaborative Research: Non-Hamiltonian Wave Dynamics in Atomic & Optical Models
OP:合作研究:原子中的非哈密尔顿波动力学
- 批准号:
1602994 - 财政年份:2016
- 资助金额:
$ 6.5万 - 项目类别:
Continuing Grant
DynSyst_Special_Topics:Collaborative Research: Fundamental and Applied Dynamics of Granular Crystals: Disorder, Localization and Energy Harvesting
DynSyst_Special_Topics:合作研究:粒状晶体的基础和应用动力学:无序、局域化和能量收集
- 批准号:
1000337 - 财政年份:2010
- 资助金额:
$ 6.5万 - 项目类别:
Standard Grant
CAREER: Solitons in Bose-Einstein Condensates: Generation, Manipulation and Pattern Formation
职业:玻色-爱因斯坦凝聚中的孤子:生成、操纵和模式形成
- 批准号:
0349023 - 财政年份:2004
- 资助金额:
$ 6.5万 - 项目类别:
Standard Grant
Discrete Solitons: Methods, Theory and Applications
离散孤子:方法、理论和应用
- 批准号:
0204585 - 财政年份:2002
- 资助金额:
$ 6.5万 - 项目类别:
Continuing Grant
相似国自然基金
溶酶体膜蛋白LAMP2新突变Y228*促进心肌细胞糖代谢异常导致Danon病心肌病的机制研究
- 批准号:82360048
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于二元重编程的归一化肿瘤疫苗在局部晚期三阴乳腺癌新辅助治疗中的作用与机制研究
- 批准号:32371451
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
甜菊糖苷新位点糖基化的机制研究及其在低热量甜味剂结构创新中的应用
- 批准号:32372277
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
新骨架紫杉烷二萜baccataxane的化学合成、衍生化和降糖活性研究
- 批准号:82373758
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
通过机器学习和多模式验证聚焦新靶点ENHO/Adropin在系统性硬化症中的作用和机制研究
- 批准号:82371818
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 6.5万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 6.5万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315696 - 财政年份:2024
- 资助金额:
$ 6.5万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315701 - 财政年份:2024
- 资助金额:
$ 6.5万 - 项目类别:
Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306378 - 财政年份:2024
- 资助金额:
$ 6.5万 - 项目类别:
Standard Grant