Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
基本信息
- 批准号:2423960
- 负责人:
- 金额:$ 38.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant will support research that will contribute new knowledge related to nonlinear dynamics and wave propagation through classical and quantum mechanical bistable structures, which is critical for phononic quantum computing. Current state-of-the-art quantum computers complete complex computations at unprecedented speeds; however, they require very low operating temperatures, limiting their practical use. Further, the current lack of a well-established tunneling junction capable of processing phononic quantum information limits progress in phononic quantum computing. Bistable structures are a promising approach for the realization of a mechanical tunneling junction because, at the nanoscale, their energy barrier approaches the energy of a single phonon. This award supports fundamental research to provide the knowledge regarding the nonlinear dynamics of classical and quantum mechanical bistable structures needed for the development of these novel tunneling junctions. These tunneling junctions will be used for processing and computing of quantum information carried by single phonons and will dramatically advance the technology of room-temperature quantum computing. This capability will advance knowledge in dynamics, quantum physics, nanoscience, and nanofabrication. This research will benefit U.S. society due to the critical need for high performance computing in science, defense and industry. This multi-disciplinary research will broaden the participation of underrepresented groups in science and engineering and positively impact STEM education.The objective of this research is to investigate the fundamental nonlinear dynamics and wave transmission through mechanical bistable structures in classical and quantum regimes for their potential application as mechanical tunneling junctions. Such mechanical tunneling junctions will process quantum bits, which is critical to quantum computing platforms using phonons. The central hypothesis of this research is that a nanoscale bistable structure can transmit mechanical waves (phonons) with a high enough transmission efficiency to act as a quantum tunneling junction if the structure is driven by nonlinear and contactless conservative interactions. This hypothesis will be tested in both classical and quantum regimes by 1) characterizing the snap-though dynamics and wave transmission of macroscale bistable elements with contact interactions and nonlinear conservative (contactless) interactions, 2) evaluating the mechanical wave (phonon) transmission efficiency through a micro-scale structure theoretically and experimentally, and 3) demonstrating the quantum dynamics of phonon tunneling through mechanical tunneling junction.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这笔赠款将支持通过经典和量子力学双稳态结构贡献与非线性动力学和波传播相关的新知识的研究,这对于声子量子计算至关重要。当前最先进的量子计算机以前所未有的速度完成复杂的计算;然而,它们需要非常低的工作温度,限制了它们的实际使用。此外,目前缺乏能够处理声子量子信息的成熟隧道结限制了声子量子计算的进展。双稳态结构是实现机械隧道结的一种有前途的方法,因为在纳米尺度上,它们的能量势垒接近单个声子的能量。该奖项支持基础研究,以提供开发这些新型隧道结所需的经典和量子力学双稳态结构的非线性动力学知识。这些隧道结将用于处理和计算单个声子携带的量子信息,并将极大地推进室温量子计算技术。这种能力将增进动力学、量子物理、纳米科学和纳米制造方面的知识。由于科学、国防和工业对高性能计算的迫切需求,这项研究将使美国社会受益。这项多学科研究将扩大代表性不足群体对科学和工程的参与,并对 STEM 教育产生积极影响。这项研究的目的是研究经典和量子体系中机械双稳态结构的基本非线性动力学和波传输及其潜在应用作为机械隧道结。这种机械隧道结将处理量子位,这对于使用声子的量子计算平台至关重要。这项研究的中心假设是,如果纳米级双稳态结构由非线性和非接触式保守相互作用驱动,则该结构可以以足够高的传输效率传输机械波(声子),从而充当量子隧道结。该假设将在经典和量子体系中进行测试,方法是:1)表征具有接触相互作用和非线性保守(非接触)相互作用的宏观双稳态元件的瞬变动力学和波传输,2)通过以下方式评估机械波(声子)传输效率:理论上和实验上的微尺度结构,3) 通过机械隧道结展示声子隧道的量子动力学。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的评估进行评估,认为值得支持影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chengzhi Shi其他文献
Non-Hermitian complementary acoustic metamaterials for lossy barriers
用于有损屏障的非厄米互补声学超材料
- DOI:
10.1063/1.5110501 - 发表时间:
2019-07-31 - 期刊:
- 影响因子:4
- 作者:
Steven R. Craig;Phoebe J. Welch;Chengzhi Shi - 通讯作者:
Chengzhi Shi
Path planning of mobile robot based on improved A∗ algorithm
基于改进A*算法的移动机器人路径规划
- DOI:
10.1109/ccdc.2017.7979125 - 发表时间:
2017-05-01 - 期刊:
- 影响因子:0
- 作者:
Mingxiu Lin;Kai Yuan;Chengzhi Shi;Yutong Wang - 通讯作者:
Yutong Wang
PT-symmetric acoustics
- DOI:
10.1121/1.4920752 - 发表时间:
2015-04-27 - 期刊:
- 影响因子:2.4
- 作者:
Xue‐Feng Zhu;H. Ramézani;Chengzhi Shi;Jie Zhu;Xiang Zhang - 通讯作者:
Xiang Zhang
Perfluorocarbon nanodroplet size, acoustic vaporization, and inertial cavitation affected by lipid shell composition in vitro.
- DOI:
10.1121/10.0014934 - 发表时间:
2022-10-01 - 期刊:
- 影响因子:0
- 作者:
Phoebe J. Welch;David S. Li;C. Forest;L. Pozzo;Chengzhi Shi - 通讯作者:
Chengzhi Shi
Numerical and experimental study of impact dynamics of bistable buckled beams
双稳态屈曲梁冲击动力学数值与实验研究
- DOI:
10.1016/j.jsv.2024.118291 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:4.7
- 作者:
Michael Rouleau;James Keller;Jason Lee;Steven Craig;Chengzhi Shi;Julien Meaud - 通讯作者:
Julien Meaud
Chengzhi Shi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chengzhi Shi', 18)}}的其他基金
PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
- 批准号:
2423820 - 财政年份:2024
- 资助金额:
$ 38.34万 - 项目类别:
Standard Grant
CAREER: Understanding the Fundamental Dynamics of Angular Momentum Carrying Acoustic Wave Propagation
职业:了解角动量携带声波传播的基本动力学
- 批准号:
2142555 - 财政年份:2022
- 资助金额:
$ 38.34万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
- 批准号:
2037565 - 财政年份:2021
- 资助金额:
$ 38.34万 - 项目类别:
Standard Grant
PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
- 批准号:
2102129 - 财政年份:2021
- 资助金额:
$ 38.34万 - 项目类别:
Standard Grant
相似国自然基金
不确定非线性系统的事件触发控制研究
- 批准号:62373096
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
化学键对硫代硼酸盐结构及非线性光学性能的调控研究
- 批准号:22305264
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
全方向非线性变换张量奇异值分解的研究及其应用
- 批准号:12301482
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非线性薛定谔方程多波包爆破解和多孤立波解的研究
- 批准号:12371122
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
面向光信息防护的光纤光学视界下非线性孤子碰撞动力学研究
- 批准号:62375080
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Nonlinear Wake Observations at a Kuroshio Seamount (NOKS)
合作研究:黑潮海山非线性尾流观测 (NOKS)
- 批准号:
2318952 - 财政年份:2024
- 资助金额:
$ 38.34万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear Wake Observations at a Kuroshio Seamount (NOKS)
合作研究:黑潮海山非线性尾流观测 (NOKS)
- 批准号:
2318951 - 财政年份:2024
- 资助金额:
$ 38.34万 - 项目类别:
Standard Grant
eMB: Collaborative Research: ML/AI-assisted environmental scale microbial nonlinear metabolic models
eMB:协作研究:ML/AI 辅助的环境规模微生物非线性代谢模型
- 批准号:
2325172 - 财政年份:2023
- 资助金额:
$ 38.34万 - 项目类别:
Standard Grant
Collaborative Research: Analysis and Control of Nonlinear Oscillatory Networks for the Design of Novel Cortical Stimulation Strategies
合作研究:用于设计新型皮质刺激策略的非线性振荡网络的分析和控制
- 批准号:
2308640 - 财政年份:2023
- 资助金额:
$ 38.34万 - 项目类别:
Standard Grant
Collaborative Research: Analysis and Control of Nonlinear Oscillatory Networks for the Design of Novel Cortical Stimulation Strategies
合作研究:用于设计新型皮质刺激策略的非线性振荡网络的分析和控制
- 批准号:
2308639 - 财政年份:2023
- 资助金额:
$ 38.34万 - 项目类别:
Standard Grant