Collaborative Research: CNS Core: Medium: Data Augmentation and Adaptive Learning for Next Generation Wireless Spectrum Systems
合作研究:CNS 核心:媒介:下一代无线频谱系统的数据增强和自适应学习
基本信息
- 批准号:2107190
- 负责人:
- 金额:$ 32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Deep learning has shown great promise in solving many open challenges in wireless networking research and applications. Deep learning is data hungry, and one of the critical obstacles towards fulfilling its promise is facilitating the acquisition of sufficient amounts of data to train and validate deep learning models. The primary goal of this project is to devise innovative approaches that enable wireless researchers and practitioners to acquire data more efficiently at reduced cost and to utilize existing data more effectively. Findings from this project are expected to fuel future breakthroughs in wireless research by making deep learning models more widely applicable. By integrating research and education, the proposed work will provide excellent hands-on exercises, research, and educational opportunities for undergraduate and graduate students at the three collaborating universities. The project will leverage the existing diversity-related outreach programs at the three institutions to broaden participation from under-represented groups. A team of four investigators with complementary expertise from Auburn University, Temple University, and California State University, Sacramento will carry out a coherent research agenda consisting of the following four thrusts: (1) Spectrum data synthesis and augmentation aided by generative adversarial networks; (2) Exploiting historical and synthetic wireless networking data through novel transfer learning algorithms; (3) Characterizing the relationship between dataset size and performance; (4) Integrate, validate and apply approaches developed in the first three thrusts on spectrum database construction, RF spectrum anomaly detection, and transmitter classification. Thrusts 1-3 are application-agnostic and focused on studying fundamental concepts and techniques that facilitate the acquisition of sufficient amounts of wireless data, enable more effective utilization of existing data, and enable the prediction of how much data is needed to meet desired performance. Thrust 4 is application-specific and focused on specific wireless applications where deep learning has been applied and demonstrated great potential. The data, software and education materials developed from this project will be widely disseminated. The project will engage industry stakeholders on project-related issues, with the aim to disseminate ideas and learn relevant challenges faced by the industry when applying deep learning to wireless applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度学习在解决无线网络研究和应用中的许多开放挑战方面显示出了巨大的前景。深度学习需要数据,而实现其承诺的关键障碍之一是促进获取足够数量的数据来训练和验证深度学习模型。该项目的主要目标是设计创新方法,使无线研究人员和从业人员能够以更低的成本更有效地获取数据,并更有效地利用现有数据。该项目的研究结果预计将通过使深度学习模型更广泛地应用来推动无线研究的未来突破。通过整合研究和教育,拟议的工作将为三所合作大学的本科生和研究生提供极好的实践练习、研究和教育机会。该项目将利用三个机构现有的与多样性相关的外展计划,扩大代表性不足群体的参与。由来自奥本大学、天普大学和加州州立大学萨克拉门托分校的四名研究人员组成的团队将执行一个连贯的研究议程,包括以下四个重点:(1)生成对抗网络辅助的频谱数据合成和增强; (2) 通过新颖的迁移学习算法利用历史和综合无线网络数据; (3) 表征数据集大小与性能之间的关系; (4) 集成、验证和应用在频谱数据库构建、射频频谱异常检测和发射机分类的前三个重点中开发的方法。主旨 1-3 与应用程序无关,专注于研究基本概念和技术,这些概念和技术有助于获取足够数量的无线数据,能够更有效地利用现有数据,并能够预测需要多少数据才能满足所需的性能。 Thrust 4 是针对特定应用的,专注于深度学习已得到应用并展现出巨大潜力的特定无线应用。该项目开发的数据、软件和教育材料将得到广泛传播。该项目将让行业利益相关者参与项目相关问题,旨在传播想法并了解行业在将深度学习应用于无线应用时所面临的相关挑战。该奖项反映了 NSF 的法定使命,并通过评估认为值得支持。基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Meta-Pose: Environment-adaptive Human Skeleton Tracking with RFID
Meta-Pose:利用 RFID 进行环境自适应人体骨骼追踪
- DOI:10.1109/globecom46510.2021.9685315
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Yang, Chao;Wang, Lingxiao;Wang, Xuyu;Mao, Shiwen
- 通讯作者:Mao, Shiwen
MapLoc: LSTM-Based Location Estimation Using Uncertainty Radio Maps
MapLoc:使用不确定性无线电地图进行基于 LSTM 的位置估计
- DOI:10.1109/jiot.2023.3262619
- 发表时间:2023-08
- 期刊:
- 影响因子:10.6
- 作者:Wang, Xiangyu;Yu, Zhitao;Mao, Shiwen;Zhang, Jian;Periaswamy, Senthilkumar C.;Patton, Justin
- 通讯作者:Patton, Justin
Adversarial Deep Learning for Indoor Localization With Channel State Information Tensors
使用通道状态信息张量进行室内定位的对抗性深度学习
- DOI:10.1109/jiot.2022.3155562
- 发表时间:2022-10
- 期刊:
- 影响因子:10.6
- 作者:Wang, Xiangyu;Wang, Xuyu;Mao, Shiwen;Zhang, Jian;Periaswamy, Senthilkumar C.;Patton, Justin
- 通讯作者:Patton, Justin
Data Augmentation for RFID-based 3D Human Pose Tracking
基于 RFID 的 3D 人体姿势跟踪的数据增强
- DOI:10.1109/vtc2022-fall57202.2022.10013052
- 发表时间:2022-09
- 期刊:
- 影响因子:0
- 作者:Wang, Ziqi;Yang, Chao;Mao, Shiwen
- 通讯作者:Mao, Shiwen
RFID-based 3D human pose tracking: A subject generalization approach
基于 RFID 的 3D 人体姿势跟踪:一种主题概括方法
- DOI:10.1016/j.dcan.2021.09.002
- 发表时间:2021-09-01
- 期刊:
- 影响因子:0
- 作者:Chao Yang;Xuyu Wang;S. Mao
- 通讯作者:S. Mao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shiwen Mao其他文献
An Efficient RFF Extraction Method Using Asymmetric Masked Auto-Encoder
一种使用非对称屏蔽自动编码器的高效 RFF 提取方法
- DOI:
10.1109/apcc60132.2023.10460605 - 发表时间:
2023-11-19 - 期刊:
- 影响因子:0
- 作者:
Zhisheng Yao;Xue Fu;Shufei Wang;Yu Wang;Guan Gui;Shiwen Mao - 通讯作者:
Shiwen Mao
Generative AI-empowered Effective Physical-Virtual Synchronization in the Vehicular Metaverse
车辆虚拟宇宙中由生成式人工智能驱动的有效物理-虚拟同步
- DOI:
10.1109/metacom57706.2023.00106 - 发表时间:
2023-01-18 - 期刊:
- 影响因子:0
- 作者:
Minrui Xu;D. Niyato;Hongliang Zhang;Jiawen Kang;Zehui Xiong;Shiwen Mao;Zhu Han - 通讯作者:
Zhu Han
Large-scale real-world radio signal recognition with deep learning
通过深度学习进行大规模现实世界无线电信号识别
- DOI:
10.1016/j.cja.2021.08.016 - 发表时间:
2021-10-01 - 期刊:
- 影响因子:5.7
- 作者:
Ya Tu;Yun Lin;Haoran Zha;Ju Zhang;Yu Wang;Guan Gui;Shiwen Mao - 通讯作者:
Shiwen Mao
Guest Editorial Special Issue on Collaborative Intelligence for Green Internet of Things in the 6G Era
6G时代绿色物联网协同智能客座社论特刊
- DOI:
10.1109/tgcn.2023.3274248 - 发表时间:
2023-06-01 - 期刊:
- 影响因子:0
- 作者:
Celimuge Wu;K. Yau;Zonghua Zhang;D. Turgut;Shiwen Mao - 通讯作者:
Shiwen Mao
Joint Foundation Model Caching and Inference of Generative AI Services for Edge Intelligence
用于边缘智能的生成式人工智能服务的联合基础模型缓存和推理
- DOI:
10.1109/globecom54140.2023.10436771 - 发表时间:
2023-05-20 - 期刊:
- 影响因子:0
- 作者:
Minrui Xu;D. Niyato;Hongliang Zhang;Jiawen Kang;Zehui Xiong;Shiwen Mao;Zhu Han - 通讯作者:
Zhu Han
Shiwen Mao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shiwen Mao', 18)}}的其他基金
Collaborative Research: SCH: AI-driven RFID Sensing for Smart Health Applications
合作研究:SCH:面向智能健康应用的人工智能驱动的 RFID 传感
- 批准号:
2306789 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Collaborative Research: IMR: MM-1A: Functional Data Analysis-aided Learning Methods for Robust Wireless Measurements
合作研究:IMR:MM-1A:用于稳健无线测量的功能数据分析辅助学习方法
- 批准号:
2319342 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Collaborative Research: SCH: AI-driven RFID Sensing for Smart Health Applications
合作研究:SCH:面向智能健康应用的人工智能驱动的 RFID 传感
- 批准号:
2306789 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: When RFID Meets AI for Occluded Body Skeletal Posture Capture in Smart Healthcare
合作研究:CCSS:当 RFID 与人工智能相遇,用于智能医疗保健中闭塞的身体骨骼姿势捕获
- 批准号:
2245608 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
RINGS: l-RIM: Learning based Resilient Immersive Media-Compression, Delivery, and Interaction
RINGS:l-RIM:基于学习的弹性沉浸式媒体压缩、交付和交互
- 批准号:
2148382 - 财政年份:2022
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
CCSS: Autonomous Drone and Ground Robot Cooperative Tasking in Complex Indoor Environments
CCSS:复杂室内环境中的自主无人机和地面机器人协作任务
- 批准号:
1923163 - 财政年份:2019
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
CCSS: Autonomous Drone and Ground Robot Cooperative Tasking in Complex Indoor Environments
CCSS:复杂室内环境中的自主无人机和地面机器人协作任务
- 批准号:
1923163 - 财政年份:2019
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
RUI: SpecEES: Collaborative Research: Enabling Secure, Energy-Efficient, and Smart In-Band Full Duplex Wireless
RUI:SpecEES:协作研究:实现安全、节能和智能的带内全双工无线
- 批准号:
1923717 - 财政年份:2019
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
RUI: SpecEES: Collaborative Research: Enabling Secure, Energy-Efficient, and Smart In-Band Full Duplex Wireless
RUI:SpecEES:协作研究:实现安全、节能和智能的带内全双工无线
- 批准号:
1923717 - 财政年份:2019
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Phase I IUCRC Auburn University: Fiber-Wireless Integration and Networking (FiWIN) Center for Heterogeneous Mobile Data Communications
第一阶段 IUCRC 奥本大学:异构移动数据通信光纤无线集成和网络 (FiWIN) 中心
- 批准号:
1822055 - 财政年份:2018
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
相似国自然基金
LncMOB3A-2编码多肽在肠外致病性大肠杆菌入侵中枢神经系统中的作用机制研究
- 批准号:32302954
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
S100A9作为万古霉素儿童中枢神经系统抗感染个体化治疗预测因子的机制研究和量效分析
- 批准号:82304631
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
失重效应影响中枢神经系统药物脑空间分布及药动学的机制和调控研究
- 批准号:82373939
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
染色质重塑因子CHD3调控中枢神经系统少突胶质细胞发育的机制研究
- 批准号:82301950
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于人体镜像中枢神经系统和信任度的假肢互适应机制研究
- 批准号:62363006
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: CNS Core: Small: Accelerating Serverless Cloud Network Performance
协作研究:CNS 核心:小型:加速无服务器云网络性能
- 批准号:
2229454 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: RCBP-RF: CNS: ESD4CDaT - Efficient System Design for Cancer Detection and Treatment
合作研究:CISE-MSI:RCBP-RF:CNS:ESD4CDaT - 癌症检测和治疗的高效系统设计
- 批准号:
2318573 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Center of Biomedical Research Excellence in CNS Metabolism
中枢神经系统代谢生物医学卓越研究中心
- 批准号:
10557542 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2343863 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant