RUI: SpecEES: Collaborative Research: Enabling Secure, Energy-Efficient, and Smart In-Band Full Duplex Wireless

RUI:SpecEES:协作研究:实现安全、节能和智能的带内全双工无线

基本信息

  • 批准号:
    1923717
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

In-band full-duplex (IBFD) wireless communication technique has tremendous potentials in spectral efficiency because of its simultaneous transmission and reception of information. Although IBFD wireless communication technique has been theoretically investigated and analyzed for years, it remains very challenging to be systemically enabled in practice because of a few hurdles. This project will design and develop deep learning resolutions of self-interference cancellation, power control, and security for future IBFD wireless communication systems. The research can potentially double the wireless spectrum efficiency and impact future wireless standards and policies. Outcomes as publications and open source codes will be made available to the research community to significantly facilitate the research on deep learning-based wireless communications. This project will integrate the research outcomes into course curricula to promote training workforce with knowledge and skills in deep learning and future wireless system design. Underrepresented students will be recruited to participate as research assistants or through special programs, e.g., the Louis Stokes Alliance for Minority Participation Program or the Sloan Engineering Program at the collaborative institutions. This research tackles three major challenges and problems to enable secure, spectrum-efficient, and energy-efficient IBFD wireless communication systems. First, this project will design deep learning based all-digital self-interference cancellation solutions with the potential of doubling the spectrum efficiency. Such design with nonlinear solutions is expected to model the self-interference much more accurately than conventional solutions. The proposed per-symbol estimation of wireless channel condition will provide the highest resolution of channel dynamics to upper layers for cross-layer designs. Second, deep learning power control solutions will be designed to maximize the energy efficiency of IBFD wireless system. These solutions are expected to achieve optimal performance while overcoming the computational and mathematical hurdles in traditional solutions. Third, by data-mining the IBFD channel dynamics, new solutions for wireless security with high degrees of efficiency and secrecy will be developed for IBFD wireless communication systems and networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
带内全双工(IBFD)无线通信技术由于能够同时传输和接收信息,因此在频谱效率方面具有巨大的潜力。尽管IBFD无线通信技术已经在理论上进行了多年的研究和分析,但由于存在一些障碍,在实践中系统地实现仍然非常具有挑战性。 该项目将为未来IBFD无线通信系统设计和开发自干扰消除、功率控制和安全性的深度学习解决方案。该研究有可能使无线频谱效率提高一倍,并影响未来的无线标准和政策。成果将作为出版物和开源代码提供给研究界,以极大地促进基于深度学习的无线通信的研究。该项目将把研究成果整合到课程中,以促进培​​训劳动力掌握深度学习和未来无线系统设计方面的知识和技能。代表性不足的学生将被招募作为研究助理或通过特殊项目参与,例如路易斯斯托克斯少数族裔参与计划联盟或合作机构的斯隆工程项目。这项研究解决了三个主要挑战和问题,以实现安全、频谱高效和节能的 IBFD 无线通信系统。首先,该项目将设计基于深度学习的全数字自干扰消除解决方案,具有使频谱效率翻倍的潜力。这种采用非线性解决方案的设计有望比传统解决方案更准确地模拟自干扰。所提出的无线信道条件的每符号估计将为跨层设计的上层提供最高分辨率的信道动态。其次,将设计深度学习功率控制解决方案,以最大限度地提高IBFD无线系统的能源效率。这些解决方案预计将实现最佳性能,同时克服传统解决方案中的计算和数学障碍。第三,通过对 IBFD 信道动态进行数据挖掘,将为 IBFD 无线通信系统和网络开发高效、保密的新无线安全解决方案。该奖项反映了 NSF 的法定使命,并通过使用评估结果被认为值得支持。基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Beamforming Design for Rate Splitting MIMO
速率分割 MIMO 的波束成形设计
Dealing With Link Blockage in mmWave Networks: A Combination of D2D Relaying, Multi-Beam Reflection, and Handover
处理毫米波网络中的链路阻塞:D2D 中继、多波束反射和切换的组合
Online Distributed Offloading and Computing Resource Management With Energy Harvesting for Heterogeneous MEC-Enabled IoT
通过能量收集实现异构 MEC 物联网的在线分布式卸载和计算资源管理
A QoE evaluation and adaptation method for multi-player online games
一种多人在线游戏的QoE评估与适配方法
  • DOI:
    10.1007/978-3-030-89814-4_12
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zaijian Wang; Wei Guo
  • 通讯作者:
    Wei Guo
QoE-Aware Traffic Aggregation Using Preference Logic for Edge Intelligence
使用偏好逻辑实现边缘智能的 QoE 感知流量聚合
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shiwen Mao其他文献

An Efficient RFF Extraction Method Using Asymmetric Masked Auto-Encoder
一种使用非对称屏蔽自动编码器的高效 RFF 提取方法
Generative AI-empowered Effective Physical-Virtual Synchronization in the Vehicular Metaverse
车辆虚拟宇宙中由生成式人工智能驱动的有效物理-虚拟同步
Large-scale real-world radio signal recognition with deep learning
通过深度学习进行大规模现实世界无线电信号识别
  • DOI:
    10.1016/j.cja.2021.08.016
  • 发表时间:
    2021-10-01
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Ya Tu;Yun Lin;Haoran Zha;Ju Zhang;Yu Wang;Guan Gui;Shiwen Mao
  • 通讯作者:
    Shiwen Mao
Guest Editorial Special Issue on Collaborative Intelligence for Green Internet of Things in the 6G Era
6G时代绿色物联网协同智能客座社论特刊
  • DOI:
    10.1109/tgcn.2023.3274248
  • 发表时间:
    2023-06-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Celimuge Wu;K. Yau;Zonghua Zhang;D. Turgut;Shiwen Mao
  • 通讯作者:
    Shiwen Mao
Joint Foundation Model Caching and Inference of Generative AI Services for Edge Intelligence
用于边缘智能的生成式人工智能服务的联合基础模型缓存和推理

Shiwen Mao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shiwen Mao', 18)}}的其他基金

Collaborative Research: SCH: AI-driven RFID Sensing for Smart Health Applications
合作研究:SCH:面向智能健康应用的人工智能驱动的 RFID 传感
  • 批准号:
    2306789
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: AI-driven RFID Sensing for Smart Health Applications
合作研究:SCH:面向智能健康应用的人工智能驱动的 RFID 传感
  • 批准号:
    2306789
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: When RFID Meets AI for Occluded Body Skeletal Posture Capture in Smart Healthcare
合作研究:CCSS:当 RFID 与人工智能相遇,用于智能医疗保健中闭塞的身体骨骼姿势捕获
  • 批准号:
    2245608
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: IMR: MM-1A: Functional Data Analysis-aided Learning Methods for Robust Wireless Measurements
合作研究:IMR:MM-1A:用于稳健无线测量的功能数据分析辅助学习方法
  • 批准号:
    2319342
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
RINGS: l-RIM: Learning based Resilient Immersive Media-Compression, Delivery, and Interaction
RINGS:l-RIM:基于学习的弹性沉浸式媒体压缩、交付和交互
  • 批准号:
    2148382
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Medium: Data Augmentation and Adaptive Learning for Next Generation Wireless Spectrum Systems
合作研究:CNS 核心:媒介:下一代无线频谱系统的数据增强和自适应学习
  • 批准号:
    2107190
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CCSS: Autonomous Drone and Ground Robot Cooperative Tasking in Complex Indoor Environments
CCSS:复杂室内环境中的自主无人机和地面机器人协作任务
  • 批准号:
    1923163
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CCSS: Autonomous Drone and Ground Robot Cooperative Tasking in Complex Indoor Environments
CCSS:复杂室内环境中的自主无人机和地面机器人协作任务
  • 批准号:
    1923163
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Phase I IUCRC Auburn University: Fiber-Wireless Integration and Networking (FiWIN) Center for Heterogeneous Mobile Data Communications
第一阶段 IUCRC 奥本大学:异构移动数据通信光纤无线集成和网络 (FiWIN) 中心
  • 批准号:
    1822055
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
WiFiUS: RF Sensing in Internet of Things: When Deep Learning Meets CSI Tensor
WiFiUS:物联网中的射频传感:当深度学习遇到 CSI Tensor
  • 批准号:
    1702957
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似海外基金

RUI: SpecEES: Collaborative Research: Enabling Secure, Energy-Efficient, and Smart In-Band Full Duplex Wireless
RUI:SpecEES:协作研究:实现安全、节能和智能的带内全双工无线
  • 批准号:
    2300955
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
RUI: SpecEES: Collaborative Research: Enabling Secure, Energy-Efficient, and Smart In-Band Full Duplex Wireless
RUI:SpecEES:协作研究:实现安全、节能和智能的带内全双工无线
  • 批准号:
    2109971
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
RUI: SpecEES: Collaborative Research: Enabling Secure, Energy-Efficient, and Smart In-Band Full Duplex Wireless
RUI:SpecEES:协作研究:实现安全、节能和智能的带内全双工无线
  • 批准号:
    1923409
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
RUI: SpecEES: Collaborative Research: Enabling Secure, Energy-Efficient, and Smart In-Band Full Duplex Wireless
RUI:SpecEES:协作研究:实现安全、节能和智能的带内全双工无线
  • 批准号:
    1923712
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
RUI: SpecEES: Collaborative Research: Enabling Secure, Energy-Efficient, and Smart In-Band Full Duplex Wireless
RUI:SpecEES:协作研究:实现安全、节能和智能的带内全双工无线
  • 批准号:
    1923712
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了