Collaborative Research: IMR: MM-1A: Functional Data Analysis-aided Learning Methods for Robust Wireless Measurements
合作研究:IMR:MM-1A:用于稳健无线测量的功能数据分析辅助学习方法
基本信息
- 批准号:2319342
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With the growth of large-scale, heterogeneous, dynamic, and complex wireless networks, how to achieve accurate and robust measurements in 5G networks and beyond becomes a challenging and important problem. Most existing data-driven solutions are black-box approaches, which may not be robust and adaptive, and work only for low-dimensional and discrete data. In fact, wireless data belong to the class of functional data, which can be represented by curves or functions. High-dimensional wireless datasets can be better handled by functional data analysis (FDA). Recognizing the significance of the aforementioned problems, this project aims to bridge the gap between FDA-based learning and wireless measurement. The proposed research falls into the following four interwoven thrusts. (i) Functional Data Regression for Sparse Wireless Measurements: to develop a deep learning-based approach to address fundamental regression problems of functional data. (ii) FDA-based Transfer Learning for Dynamic Wireless Measurements: to study transfer learning for functional data regression and classification under the distribution shift between test data and training data for effective wireless measurements in dynamic environments. (iii) Quantile FDA-based Learning for Robust Wireless Measurements and Control: to develop a deep learning-based approach to address the fundamental bottleneck of quantile regression-based methods. (iv) Wireless Measurement Applications for Integration and Validation. If successful, this research will greatly advance the practice and understanding of functional data for wireless measurement and related fields. The educational and outreach components include: (i) Curriculum enhancement with learning theory and FDA, and joint developing a graduate course on FDA-based learning for wireless measurements. (ii) Engaging undergrads with hands-on projects. The existing outreach programs will be leveraged to offer research opportunities and seminars to undergrads, with emphasis on engaging underrepresented students. (iii) Outreach activities to increase public awareness, include journal publications, conference presentations, seminars, IEEE distinguished lectures, journal special issues, and workshops and special sessions at major conferences.The code produced from this project will be disseminated at the public repository GitHub (https://github.com/). A project website will be maintained at Auburn University with URL: https://www.eng.auburn.edu/~szm0001/proj_lMR23.html. This project website will be frequently and regularly updated for dissemination of the outcomes from this project, including a description of the project, project team, major outcomes such as publications, codes and datasets, as well as an acknowledgement of NSF support to this project. This website will be managed/updated by the PI for the three-year project period. This project is jointly funded by the Networking Technology and Systems (NeTS) program, the Established Program to Stimulate Competitive Research (EPSCoR), the Statistics program in the Division of Mathematical Sciences (DMS), and the Computing and Communication Foundations Division.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着大规模、异构、动态和复杂无线网络的发展,如何在 5G 网络及以后的网络中实现准确、鲁棒的测量成为一个具有挑战性的重要问题。大多数现有的数据驱动解决方案都是黑盒方法,可能不具有鲁棒性和适应性,并且仅适用于低维和离散数据。事实上,无线数据属于函数数据类,可以用曲线或函数来表示。高维无线数据集可以通过功能数据分析(FDA)更好地处理。认识到上述问题的重要性,该项目旨在弥合基于 FDA 的学习和无线测量之间的差距。拟议的研究分为以下四个相互交织的主旨。 (i) 稀疏无线测量的功能数据回归:开发一种基于深度学习的方法来解决功能数据的基本回归问题。 (ii) 基于 FDA 的动态无线测量迁移学习:研究在测试数据和训练数据之间的分布变化下功能数据回归和分类的迁移学习,以便在动态环境中进行有效的无线测量。 (iii) 基于分位数 FDA 的鲁棒无线测量和控制学习:开发基于深度学习的方法来解决基于分位数回归方法的基本瓶颈。 (iv) 用于集成和验证的无线测量应用。如果成功,这项研究将极大地促进无线测量及相关领域功能数据的实践和理解。教育和推广部分包括: (i) 通过学习理论和 FDA 加强课程,并联合开发基于 FDA 的无线测量学习研究生课程。 (ii) 让本科生参与实践项目。将利用现有的外展计划为本科生提供研究机会和研讨会,重点是吸引代表性不足的学生。 (iii) 提高公众意识的外展活动,包括期刊出版物、会议演讲、研讨会、IEEE 杰出讲座、期刊特刊以及主要会议的研讨会和特别会议。该项目生成的代码将在公共存储库 GitHub 上传播(https://github.com/)。奥本大学将维护一个项目网站,网址为:https://www.eng.auburn.edu/~szm0001/proj_lMR23.html。该项目网站将经常更新,以传播该项目的成果,包括项目的描述、项目团队、出版物、代码和数据集等主要成果,以及对 NSF 对该项目支持的认可。该网站将由 PI 在三年项目期间进行管理/更新。该项目由网络技术和系统(NeTS)计划、刺激竞争研究既定计划(EPSCoR)、数学科学部(DMS)统计计划以及计算和通信基础部共同资助。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shiwen Mao其他文献
Beamforming Design for Rate Splitting MIMO
速率分割 MIMO 的波束成形设计
- DOI:
10.1109/iccworkshops50388.2021.9473811 - 发表时间:
2021-06-01 - 期刊:
- 影响因子:0
- 作者:
Ticao Zhang;Shiwen Mao - 通讯作者:
Shiwen Mao
TFSemantic: A Time-Frequency Semantic GAN Framework for Imbalanced Classification Using Radio Signals
TFSemantic:使用无线电信号进行不平衡分类的时频语义 GAN 框架
- DOI:
10.1145/3614096 - 发表时间:
2023-08-08 - 期刊:
- 影响因子:4.1
- 作者:
Peng Liao;Xuyu Wang;Lin An;Shiwen Mao;Tianya Zhao;Chao Yang - 通讯作者:
Chao Yang
Joint Foundation Model Caching and Inference of Generative AI Services for Edge Intelligence
用于边缘智能的生成式人工智能服务的联合基础模型缓存和推理
- DOI:
10.1109/globecom54140.2023.10436771 - 发表时间:
2023-05-20 - 期刊:
- 影响因子:0
- 作者:
Minrui Xu;D. Niyato;Hongliang Zhang;Jiawen Kang;Zehui Xiong;Shiwen Mao;Zhu Han - 通讯作者:
Zhu Han
An Efficient RFF Extraction Method Using Asymmetric Masked Auto-Encoder
一种使用非对称屏蔽自动编码器的高效 RFF 提取方法
- DOI:
10.1109/apcc60132.2023.10460605 - 发表时间:
2023-11-19 - 期刊:
- 影响因子:0
- 作者:
Zhisheng Yao;Xue Fu;Shufei Wang;Yu Wang;Guan Gui;Shiwen Mao - 通讯作者:
Shiwen Mao
Supervised Contrastive Learning for RFF Identification With Limited Samples
有限样本下 RFF 识别的监督对比学习
- DOI:
10.1109/jiot.2023.3272628 - 发表时间:
2023-10-01 - 期刊:
- 影响因子:10.6
- 作者:
Yang Peng;Changbo Hou;Yibin Zhang;Yun Lin;Guan Gui;H. Gačanin;Shiwen Mao;Fumiyuki Adachi - 通讯作者:
Fumiyuki Adachi
Shiwen Mao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shiwen Mao', 18)}}的其他基金
Collaborative Research: SCH: AI-driven RFID Sensing for Smart Health Applications
合作研究:SCH:面向智能健康应用的人工智能驱动的 RFID 传感
- 批准号:
2306789 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SCH: AI-driven RFID Sensing for Smart Health Applications
合作研究:SCH:面向智能健康应用的人工智能驱动的 RFID 传感
- 批准号:
2306789 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: When RFID Meets AI for Occluded Body Skeletal Posture Capture in Smart Healthcare
合作研究:CCSS:当 RFID 与人工智能相遇,用于智能医疗保健中闭塞的身体骨骼姿势捕获
- 批准号:
2245608 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
RINGS: l-RIM: Learning based Resilient Immersive Media-Compression, Delivery, and Interaction
RINGS:l-RIM:基于学习的弹性沉浸式媒体压缩、交付和交互
- 批准号:
2148382 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Medium: Data Augmentation and Adaptive Learning for Next Generation Wireless Spectrum Systems
合作研究:CNS 核心:媒介:下一代无线频谱系统的数据增强和自适应学习
- 批准号:
2107190 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CCSS: Autonomous Drone and Ground Robot Cooperative Tasking in Complex Indoor Environments
CCSS:复杂室内环境中的自主无人机和地面机器人协作任务
- 批准号:
1923163 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
RUI: SpecEES: Collaborative Research: Enabling Secure, Energy-Efficient, and Smart In-Band Full Duplex Wireless
RUI:SpecEES:协作研究:实现安全、节能和智能的带内全双工无线
- 批准号:
1923717 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CCSS: Autonomous Drone and Ground Robot Cooperative Tasking in Complex Indoor Environments
CCSS:复杂室内环境中的自主无人机和地面机器人协作任务
- 批准号:
1923163 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
RUI: SpecEES: Collaborative Research: Enabling Secure, Energy-Efficient, and Smart In-Band Full Duplex Wireless
RUI:SpecEES:协作研究:实现安全、节能和智能的带内全双工无线
- 批准号:
1923717 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Phase I IUCRC Auburn University: Fiber-Wireless Integration and Networking (FiWIN) Center for Heterogeneous Mobile Data Communications
第一阶段 IUCRC 奥本大学:异构移动数据通信光纤无线集成和网络 (FiWIN) 中心
- 批准号:
1822055 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
IGF-1R调控HIF-1α促进Th17细胞分化在甲状腺眼病发病中的机制研究
- 批准号:82301258
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CTCFL调控IL-10抑制CD4+CTL旁观者激活促口腔鳞状细胞癌新辅助免疫治疗抵抗机制研究
- 批准号:82373325
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
RNA剪接因子PRPF31突变导致人视网膜色素变性的机制研究
- 批准号:82301216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
血管内皮细胞通过E2F1/NF-kB/IL-6轴调控巨噬细胞活化在眼眶静脉畸形中的作用及机制研究
- 批准号:82301257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多元原子间相互作用的铝合金基体团簇调控与强化机制研究
- 批准号:52371115
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: IMR: MM-1A: Functional Data Analysis-aided Learning Methods for Robust Wireless Measurements
合作研究:IMR:MM-1A:用于稳健无线测量的功能数据分析辅助学习方法
- 批准号:
2319343 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: IMR: MM-1C: Methods for Active Measurement of the Domain Name System
合作研究:IMR:MM-1C:域名系统主动测量方法
- 批准号:
2319368 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
- 批准号:
2319593 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: IMR: MM-1B: Privacy-Preserving Data Sharing for Mobile Internet Measurement and Traffic Analytics
合作研究:IMR:MM-1B:移动互联网测量和流量分析的隐私保护数据共享
- 批准号:
2344341 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: IMR: MM-1C: Methods for Active Measurement of the Domain Name System
合作研究:IMR:MM-1C:域名系统主动测量方法
- 批准号:
2319367 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant