Collaborative Research: SHF: Medium: Revitalizing EDA from a Machine Learning Perspective

合作研究:SHF:媒介:从机器学习的角度振兴 EDA

基本信息

  • 批准号:
    2106828
  • 负责人:
  • 金额:
    $ 41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Despite its spectacular success in the past, design automation of electronic circuits and systems remains limited in effectiveness and efficiency. This is often due to unnecessarily excessive iterations of point software tools, where early predictions on downstream design steps are overly pessimistic and interoperations among different tools largely require manual handling. As such, existing chip-design flows are not considered fully automated, and there still exists a strong need for jointly exploring the considerable room between the different steps in these flows. Moreover, existing design-verification approaches usually involve unwanted redundancy and substantial manual effort, contributing greatly to a well-known bottleneck of time-to-market. The recent progress in machine-learning technology offers a great opportunity to revitalize current Electronic Design Automation (EDA) flows from an alternative perspective, i.e., extracting design and verification knowledge from existing design data, and reusing it on new designs. The goal of this research is to develop such knowledge extraction and reuse techniques with the aid of the state-of-the-art machine learning technology. The outcome of this research is to help mitigate the chip-design productivity crisis and cater to the increasing demand for hardware-accelerated computing. This research is also training students, including women and under-represented minorities, with interdisciplinary skills and preparing tomorrow’s high-tech workforce in the U.S. for solving challenges in the electronic industry.The project involves systematic research on machine learning in the context of electronic design automation with five integrated components: 1) development of learning-based fast and high fidelity prediction techniques for knowledge extraction in the structural and behavioral domains of circuit designs; 2) a study on how to seamlessly integrate the design predictions with circuit optimizations; 3) applying machine-learning prediction to accelerating functional-verification coverage and facilitating automated debugging; 4) developing autonomous learning on the interplay amongst tools and thereby achieving automated synthesis space exploration; 5) automated machine-learning architecture search and feature refinement in EDA applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管电子电路和系统的设计自动化在过去取得了巨大的成功,但其有效性和效率仍然有限,这通常是由于点软件工具的不必要的过度迭代,其中对下游设计步骤的早期预测过于悲观以及不同工具之间的互操作。因此,现有的芯片设计流程并不被认为是完全自动化的,并且仍然强烈需要共同探索这些流程中不同步骤之间的相当大的空间。此外,现有的设计验证方法通常涉及不需要的内容。冗余机器学习技术的最新进展为从另一种角度(即提取)振兴当前的电子设计自动化(EDA)流程提供了绝佳的机会。这项研究的目标是借助最先进的机器学习技术来开发此类知识提取和重用技术。研究是为了帮助缓解这项研究还对学生(包括女性和代表性不足的少数族裔)进行跨学科培训,并为美国未来的高科技劳动力解决技术挑战做好准备。该项目涉及电子设计自动化背景下的机器学习系统研究,具有五个集成组件:1)开发基于学习的快速高保真预测技术,用于电路设计结构和行为领域的知识提取; 2) 研究如何将设计预测与电路优化无缝集成;3)应用机器学习预测来加速功能验证覆盖范围并促进自动化调试;4)开发工具间相互作用的自主学习,从而实现自动化综合空间探索; EDA 应用中的机器学习架构搜索和功能细化。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
How Good Is Your Verilog RTL Code?: A Quick Answer from Machine Learning
您的 Verilog RTL 代码有多好?:机器学习的快速解答
Automatic Routability Predictor Development Using Neural Architecture Search
使用神经架构搜索开发自动可路由性预测器
  • DOI:
    10.1109/iccad51958.2021.9643483
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chang, Chen;Pan, Jingyu;Zhang, Tunhou;Xie, Zhiyao;Hu, Jiang;Qi, Weiyi;Lin, Chun;Liang, Rongjian;Mitra, Joydeep;Fallon, Elias;et al
  • 通讯作者:
    et al
APOLLO: An Automated Power Modeling Framework for Runtime Power Introspection in High-Volume Commercial Microprocessors
APOLLO:用于大容量商用微处理器运行时功耗自省的自动功耗建模框架
  • DOI:
    10.1145/3466752.3480064
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xie, Zhiyao;Xu, Xiaoqing;Walker, Matt;Knebel, Joshua;Palaniswamy, Kumaraguru;Hebert, Nicolas;Hu, Jiang;Yang, Huanrui;Chen, Yiran;Das, Shidhartha
  • 通讯作者:
    Das, Shidhartha
The Dark Side: Security and Reliability Concerns in Machine Learning for EDA
黑暗面:EDA 机器学习的安全性和可靠性问题
Preplacement Net Length and Timing Estimation by Customized Graph Neural Network
通过定制图神经网络进行预置网络长度和时序估计
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yiran Chen其他文献

Tolerating Noise Effects in Processing‐in‐Memory Systems for Neural Networks: A Hardware–Software Codesign Perspective
容忍神经网络处理过程中的噪声影响——从硬件到软件协同设计的角度
  • DOI:
    10.1002/aisy.202200029
  • 发表时间:
    2022-05-22
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Xiaoxuan Yang;Changming Wu;Mo Li;Yiran Chen
  • 通讯作者:
    Yiran Chen
CD19 and CD70 Dual-Target Chimeric Antigen Receptor T-Cell Therapy for the Treatment of Relapsed and Refractory Primary Central Nervous System Diffuse Large B-Cell Lymphoma
CD19 和 CD70 双靶点嵌合抗原受体 T 细胞疗法用于治疗复发性和难治性原发性中枢神经系统弥漫性大 B 细胞淋巴瘤
  • DOI:
    10.3389/fonc.2019.01350
  • 发表时间:
    2019-12-04
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    S. Tu;Xuan Zhou;Zhenling Guo;R. Huang;Chunyan Yue;Yanjie He;Meifang Li;Yiran Chen;Yuchen Liu;Lung;Yuhua Li
  • 通讯作者:
    Yuhua Li
[Emission strength and source apportionment of volatile organic compounds in Shanghai during 2010 EXPO].
2010年世博会期间上海挥发性有机物排放强度及来源解析
  • DOI:
  • 发表时间:
    2012-12-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hong;Chang;Hai;Qian Wang;Yiran Chen;Cheng Huang;Li Li;Gang;Ming;S. Lou;L. Qiao
  • 通讯作者:
    L. Qiao
Snooping Attacks on Deep Reinforcement Learning
对深度强化学习的窥探攻击
  • DOI:
  • 发表时间:
    2019-05-28
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew J. Inkawhich;Yiran Chen;Hai Helen Li
  • 通讯作者:
    Hai Helen Li
Spiking-based matrix computation by leveraging memristor crossbar array
利用忆阻器交叉阵列进行基于尖峰的矩阵计算

Yiran Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yiran Chen', 18)}}的其他基金

Collaborative Research: FuSe: Efficient Situation-Aware AI Processing in Advanced 2-Terminal SOT-MRAM
合作研究:FuSe:先进 2 端子 SOT-MRAM 中的高效态势感知 AI 处理
  • 批准号:
    2328805
  • 财政年份:
    2023
  • 资助金额:
    $ 41万
  • 项目类别:
    Continuing Grant
Conference: 2023 CISE Computer System Research PI Meeting
会议:2023 CISE计算机系统研究PI会议
  • 批准号:
    2341163
  • 财政年份:
    2023
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Efficient Situation-Aware AI Processing in Advanced 2-Terminal SOT-MRAM
合作研究:FuSe:先进 2 端子 SOT-MRAM 中的高效态势感知 AI 处理
  • 批准号:
    2328805
  • 财政年份:
    2023
  • 资助金额:
    $ 41万
  • 项目类别:
    Continuing Grant
Workshop Proposal: Redefining the Future of Computer Architecture from First Principles
研讨会提案:从第一原理重新定义计算机架构的未来
  • 批准号:
    2220601
  • 财政年份:
    2022
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
AI Institute for Edge Computing Leveraging Next Generation Networks (Athena)
利用下一代网络的人工智能边缘计算研究所 (Athena)
  • 批准号:
    2112562
  • 财政年份:
    2021
  • 资助金额:
    $ 41万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: CCRI:NEW: Research Infrastructure for Real-Time Computer Vision and Decision Making via Mobile Robots
合作研究:CCRI:新:通过移动机器人进行实时计算机视觉和决策的研究基础设施
  • 批准号:
    2120333
  • 财政年份:
    2021
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
EAGER: Distributed Heterogeneous Data Analytics via Federated Learning
EAGER:通过联邦学习进行分布式异构数据分析
  • 批准号:
    2140247
  • 财政年份:
    2021
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
Workshop Proposal: Processing-In-Memory (PIM) Technology - Grand Challenges and Applications
研讨会提案:内存处理 (PIM) 技术 - 重大挑战和应用
  • 批准号:
    2027324
  • 财政年份:
    2020
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
Collaborative Research: Two-dimensional Synaptic Array for Advanced Hardware Acceleration of Deep Neural Networks
合作研究:用于深度神经网络高级硬件加速的二维突触阵列
  • 批准号:
    1955246
  • 财政年份:
    2020
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
CCRI: Planning: Collaborative Research: Planning to Develop a Low-Power Computer Vision Platform to Enhance Research in Computing Systems
CCRI:规划:协作研究:规划开发低功耗计算机视觉平台以加强计算系统研究
  • 批准号:
    1925514
  • 财政年份:
    2019
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant

相似国自然基金

面向5G通信的超高频FBAR耗散机理和耗散稳定性研究
  • 批准号:
    12302200
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
  • 批准号:
    82302939
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
宽运行范围超高频逆变系统架构拓扑与调控策略研究
  • 批准号:
    52377175
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
超高频同步整流DC-DC变换器效率优化关键技术研究
  • 批准号:
    62301375
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
强震动环境下10-100Hz超高频GNSS误差精细建模及监测应用研究
  • 批准号:
    42274025
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402805
  • 财政年份:
    2024
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了