Collaborative Research: Two-dimensional Synaptic Array for Advanced Hardware Acceleration of Deep Neural Networks
合作研究:用于深度神经网络高级硬件加速的二维突触阵列
基本信息
- 批准号:1955246
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical:The big data revolution has created a critical need for new computing paradigms to efficiently extract valuable information from large datasets. In existing computing systems, data is constantly transferred between the computation and memory units. This so-called memory bottleneck limits their energy efficiency and speed. In contrast, computation and memory in the human brain (neurons and synapses) are closely and densely interconnected. This gives rise to the brain’s extremely low power consumption at ~20W. Inspired by the brain, neuromorphic computing and artificial neural networks have recently attracted immense interest. In particular, deep neural networks (DNNs) can execute complex processing tasks such as pattern recognition and image reconstruction. However, DNNs are computationally intensive and power hungry. This makes it impractical for them to be scaled up to the level of the complexity for true artificial intelligence (AI). In this project, the team will develop a novel artificial synapse for deep neural networks. This prototypical synapse will offer low power consumption, high precision, good scalability, and great potential for large-scale integration. This work can lead to significant improvement in energy efficiency, bandwidth, and performance for deep learning algorithms. The research outcome can lead to the wide use of AI for both high-performance computing and low-power flexible electronics. This project can revolutionize society through advances in healthcare, self-driving vehicles, and autonomous manufacturing. The team will work closely with their local communities to attract students to pursue engineering careers, especially those from underrepresented groups. Activities will include laboratory demonstrations, design projects, summer internships, and career workshops.Technical:The objective of this project is to develop scalable electrochemical two-dimensional (2D) synaptic arrays with high-precision and low-power for advanced hardware acceleration of deep neural networks (DNNs) with orders of magnitude improvements in energy and speed. While binary SRAM cells have shown promising performance for DNN hardware acceleration, its inherent limitations in power and area make it impractical to scale up to the complexity level required for large-scale problems and/or datasets. In this project, the team will take a holistic approach to develop scalable electrochemical 2D synaptic arrays with high precision, lower-power, good linearity, low variations, and CMOS compatibility for large-scale integration. The team will carry out the following three research tasks: (1) device-level optimization in device precision, dynamic range, and scaling; (2) array-level demonstration by building synaptic arrays, lowering device variations, and designing peripheral circuits; (3) system-level integration via building device models, implementing computing-in-memory (CIM), and demonstrating on-chip learning for pixel-to-pixel applications. This work will provide a low-power and scalable framework for the hardware acceleration of DNNs, paving the ways towards the ubiquitous use of artificial intelligence (AI) in both high-performance computers and low-power embedded systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性:大数据革命迫切需要新的计算范式,以从大型数据集中有效地提取有价值的信息。在现有的计算系统中,数据在计算和内存单元之间不断传输,这种所谓的内存瓶颈限制了它们的能源效率。相比之下,人脑(神经元和突触)中的计算和记忆紧密相连,这使得大脑的功耗极低,约为 20W,这受到大脑神经形态计算的启发。人工神经网络最近引起了极大的兴趣,特别是深度神经网络(DNN)可以执行复杂的处理任务,例如模式识别和图像重建,但是,DNN 计算量大且耗电,这使得它们不切实际。在这个项目中,该团队将为深度神经网络开发一种新型人工突触,这种原型突触将提供低功耗、高精度、良好的可扩展性和出色的可扩展性。潜力这项工作可以显着提高深度学习算法的能源效率、带宽和性能,从而推动人工智能在高性能计算和低功耗柔性电子领域的广泛应用。该项目可以通过医疗保健、自动驾驶汽车和自主制造方面的进步来彻底改变社会,该团队将与当地社区密切合作,吸引学生从事工程职业,特别是那些来自弱势群体的学生。活动将包括实验室演示、设计项目、暑期实习和职业技术:该项目的目标是开发高精度、低功耗的可扩展电化学二维 (2D) 突触阵列,用于深度神经网络 (DNN) 的高级硬件加速,在能量和速度方面实现数量级的改进虽然二进制 SRAM 单元在 DNN 硬件加速方面表现出了良好的性能,但其在功耗和面积方面的固有限制使其无法扩展到大规模问题和/或数据集所需的复杂性级别。该团队将开展以下三项研究任务:(1)器件级优化。器件精度、动态范围和缩放;(2)通过构建突触阵列、降低器件变化和设计外围电路进行阵列级演示;(3)通过构建器件模型、实现内存计算进行系统级集成; (CIM),并演示像素到像素应用的片上学习。这项工作将为 DNN 的硬件加速提供一个低功耗且可扩展的框架,为人工智能 (AI) 的普遍使用铺平道路。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ReTransformer: ReRAM-based processing-in-memory architecture for transformer acceleration
ReTransformer:基于 ReRAM 的内存处理架构,用于 Transformer 加速
- DOI:10.1145/3400302.3415640
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Yang, Xiaoxuan;Yan, Bonan;Li, Hai;Chen, Yiran
- 通讯作者:Chen, Yiran
DefT: Boosting Scalability of Deformable Convolution Operations on GPUs
DefT:提高 GPU 上可变形卷积运算的可扩展性
- DOI:10.1145/3582016.3582017
- 发表时间:2023-03-25
- 期刊:
- 影响因子:0
- 作者:Edward Hanson;Mark Horton;H. Li;Yiran Chen
- 通讯作者:Yiran Chen
Improving the Robustness and Efficiency of PIM-Based Architecture by SW/HW Co-Design
通过软件/硬件协同设计提高基于 PIM 的架构的稳健性和效率
- DOI:10.1145/3566097.3568358
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:Yang, Xiaoxuan;Li, Shiyu;Zheng, Qilin;Chen, Yiran
- 通讯作者:Chen, Yiran
Cascading structured pruning: enabling high data reuse for sparse DNN accelerators
级联结构化剪枝:实现稀疏 DNN 加速器的高数据重用
- DOI:10.1145/3470496.3527419
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Hanson, Edward;Li, Shiyu;Li, Hai 'Helen';Chen, Yiran
- 通讯作者:Chen, Yiran
SpikeSen: Low-Latency In-Sensor-Intelligence Design With Neuromorphic Spiking Neurons
SpikeSen:具有神经形态尖峰神经元的低延迟传感器内智能设计
- DOI:10.1109/tcsii.2023.3235888
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Li, Ziru;Zheng, Qilin;Chen, Yiran;Li, Hai
- 通讯作者:Li, Hai
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yiran Chen其他文献
Tolerating Noise Effects in Processing‐in‐Memory Systems for Neural Networks: A Hardware–Software Codesign Perspective
容忍神经网络处理过程中的噪声影响——从硬件到软件协同设计的角度
- DOI:
10.1002/aisy.202200029 - 发表时间:
2022-05-22 - 期刊:
- 影响因子:7.4
- 作者:
Xiaoxuan Yang;Changming Wu;Mo Li;Yiran Chen - 通讯作者:
Yiran Chen
CD19 and CD70 Dual-Target Chimeric Antigen Receptor T-Cell Therapy for the Treatment of Relapsed and Refractory Primary Central Nervous System Diffuse Large B-Cell Lymphoma
CD19 和 CD70 双靶点嵌合抗原受体 T 细胞疗法用于治疗复发性和难治性原发性中枢神经系统弥漫性大 B 细胞淋巴瘤
- DOI:
10.3389/fonc.2019.01350 - 发表时间:
2019-12-04 - 期刊:
- 影响因子:4.7
- 作者:
S. Tu;Xuan Zhou;Zhenling Guo;R. Huang;Chunyan Yue;Yanjie He;Meifang Li;Yiran Chen;Yuchen Liu;Lung;Yuhua Li - 通讯作者:
Yuhua Li
[Emission strength and source apportionment of volatile organic compounds in Shanghai during 2010 EXPO].
2010年世博会期间上海挥发性有机物排放强度及来源解析
- DOI:
- 发表时间:
2012-12-01 - 期刊:
- 影响因子:0
- 作者:
Hong;Chang;Hai;Qian Wang;Yiran Chen;Cheng Huang;Li Li;Gang;Ming;S. Lou;L. Qiao - 通讯作者:
L. Qiao
Snooping Attacks on Deep Reinforcement Learning
对深度强化学习的窥探攻击
- DOI:
- 发表时间:
2019-05-28 - 期刊:
- 影响因子:0
- 作者:
Matthew J. Inkawhich;Yiran Chen;Hai Helen Li - 通讯作者:
Hai Helen Li
Spiking-based matrix computation by leveraging memristor crossbar array
利用忆阻器交叉阵列进行基于尖峰的矩阵计算
- DOI:
10.1109/cisda.2015.7208626 - 发表时间:
2015-05-26 - 期刊:
- 影响因子:0
- 作者:
Hai Helen Li;Chenchen Liu;Bonan Yan;Chaofei Yang;Linghao Song;Zheng Li;Yiran Chen;Weijie Zhu;Qing Wu;Hao Jiang - 通讯作者:
Hao Jiang
Yiran Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yiran Chen', 18)}}的其他基金
Collaborative Research: FuSe: Efficient Situation-Aware AI Processing in Advanced 2-Terminal SOT-MRAM
合作研究:FuSe:先进 2 端子 SOT-MRAM 中的高效态势感知 AI 处理
- 批准号:
2328805 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Conference: 2023 CISE Computer System Research PI Meeting
会议:2023 CISE计算机系统研究PI会议
- 批准号:
2341163 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: Efficient Situation-Aware AI Processing in Advanced 2-Terminal SOT-MRAM
合作研究:FuSe:先进 2 端子 SOT-MRAM 中的高效态势感知 AI 处理
- 批准号:
2328805 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Workshop Proposal: Redefining the Future of Computer Architecture from First Principles
研讨会提案:从第一原理重新定义计算机架构的未来
- 批准号:
2220601 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Revitalizing EDA from a Machine Learning Perspective
合作研究:SHF:媒介:从机器学习的角度振兴 EDA
- 批准号:
2106828 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
AI Institute for Edge Computing Leveraging Next Generation Networks (Athena)
利用下一代网络的人工智能边缘计算研究所 (Athena)
- 批准号:
2112562 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Cooperative Agreement
Collaborative Research: CCRI:NEW: Research Infrastructure for Real-Time Computer Vision and Decision Making via Mobile Robots
合作研究:CCRI:新:通过移动机器人进行实时计算机视觉和决策的研究基础设施
- 批准号:
2120333 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: Distributed Heterogeneous Data Analytics via Federated Learning
EAGER:通过联邦学习进行分布式异构数据分析
- 批准号:
2140247 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Workshop Proposal: Processing-In-Memory (PIM) Technology - Grand Challenges and Applications
研讨会提案:内存处理 (PIM) 技术 - 重大挑战和应用
- 批准号:
2027324 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CCRI: Planning: Collaborative Research: Planning to Develop a Low-Power Computer Vision Platform to Enhance Research in Computing Systems
CCRI:规划:协作研究:规划开发低功耗计算机视觉平台以加强计算系统研究
- 批准号:
1925514 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
二仙汤影响肾上腺皮质-髓质激素分泌及调控下丘脑温度感受器以缓解“天癸竭”潮热的研究
- 批准号:82374307
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于径向分级组织的氨气/二甲醚高效低污染燃烧机制及协同调控研究
- 批准号:52306155
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于特罗格碱的晶态多孔聚合物材料的设计合成以及二氧化碳捕获和转化研究
- 批准号:52373213
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向气相光电催化CO2还原膜反应器构筑的质子传导二维层状膜研究
- 批准号:22378266
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于金属-二维分子筛的木质素自供氢催化解聚脱氧制备单环芳烃机理研究
- 批准号:52306231
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
- 批准号:
2400352 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
- 批准号:
2400353 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: 4D Visualization and Modeling of Two-Phase Flow and Deformation in Porous Media beyond the Realm of Creeping Flow
合作研究:蠕动流领域之外的多孔介质中两相流和变形的 4D 可视化和建模
- 批准号:
2326113 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: EPIIC: Managing Culture Change on Two Fronts: Strengthening Our Capacity to Develop Partnerships
合作研究:EPIIC:从两个方面管理文化变革:加强我们发展伙伴关系的能力
- 批准号:
2331372 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Mapping Excited State Trajectories of Multi-metal Centered Complexes by Two-Dimensional Electronic Spectroscopy
CAS:合作研究:通过二维电子光谱绘制多金属中心配合物的激发态轨迹
- 批准号:
2247821 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant