NRI/Collaborative Research: Robot-Assisted Feeding: Towards Efficient, Safe, and Personalized Caregiving Robots

NRI/合作研究:机器人辅助喂养:迈向高效、安全和个性化的护理机器人

基本信息

  • 批准号:
    2132848
  • 负责人:
  • 金额:
    $ 50.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-01 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

The goal of this project is to develop caregiving robots that can provide long-term assistance with activities of daily living (ADLs) to people with mobility limitations. Despite great strides taken towards sustainable solutions in controlled environments, robots are far from ready for adoption in real home environments as long-term caregiving solutions. Key factors could be the over-reliance on full autonomy in tasks that require dynamic physical and social interactions in unstructured environments as well as the lack of personalized assistance. Based on the central tenet that robots need to optimize both physical and social interactions to provide efficient, safe, and personalized assistance for ADLs, this work will focus on developing robot-assisted feeding as a long-term caregiving solution for a person with upper-extremity disability in an unstructured, real-home environment. Successful feeding consists of bite acquisition (i.e., picking up a food item) and bite transfer (i.e., moving it into the mouth). This project develops methods to integrate these activities towards the development of an intelligent and personalized robot-assisted feeding system. The models leverage multimodal feedback to develop human-in-the-loop control policies that adapt to a range of human and environmental factors. Realizing that full autonomy can be challenging in unstructured and dynamic environments, the methods will leverage expert human feedback while minimizing the cognitive load and interweave them intelligently with autonomy to arrive at a long-term caregiving solution. This work will have a direct impact on the lives, health, and comfort of millions of people in the world who live with motor impairments. Developing policies that consider the human in the loop at every step and learn from their feedback through multiple modalities will have an impact on many other human-robot interaction domains including but not limited to assistive teleoperation.This project will advance the state of the art of robotics from both a technical and algorithmic perspective. First, novel bite acquisition algorithms will be developed that are capable of picking up deformable objects in unstructured settings. Second, bite-transfer algorithms will be developed that learn from physical feedback provided on the robot or on the utensil when transferring food inside of a person's mouth. Finally, the research team will develop active and adaptive algorithms that tap into other sources of data, such as comparisons or language instructions, to intelligently improve the acquisition and transfer algorithms and personalize the feeding experience. This work leverages the idea of learning from multimodal human feedback---specifically by embracing physical interactions rather than trying to avoid them---to better manipulate and transfer food. The assistive acquisition and transfer algorithms will be extensively evaluated through human subject studies. The algorithms will be implemented on multiple high-degree-of-freedom robotic platforms across labs. Planned user studies and low-level implementations will advance the state of robotics outside of assistive feeding, particularly towards other ADLs or Instrumental ADLs (IADLs) in home settings, such as meal-preparation, cooking, and housework.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目的是开发护理机器人,这些机器人可以为具有行动限制的人提供长期帮助(ADL)的活动(ADL)。尽管在受控环境中迈向可持续解决方案,但机器人远未准备好在实际家庭环境中作为长期护理解决方案采用。关键因素可能是在需要动态的身体和社交互动的任务中过度依赖自主权在非结构化环境中以及缺乏个性化的帮助。基于机器人需要优化物理和社交互动以为ADL提供高效,安全和个性化的援助的中心宗旨,这项工作将着重于开发机器人辅助的喂养,作为在非结构化的现实房屋环境中具有上高级残疾的长期护理解决方案。成功的喂养包括咬合(即拿起食品)和咬合转移(即将其移入口腔)组成。该项目开发了将这些活动集成到开发智能和个性化机器人辅助喂养系统的方法。这些模型利用多模式反馈来制定适合一系列人类和环境因素的人类在环境控制策略。意识到在非结构化和动态的环境中完全自治可能具有挑战性,这些方法将利用专家的反馈,同时最大程度地减少认知负担,并将其与自主权巧妙地交织在一起以达成长期护理解决方案。这项工作将直接影响世界上数以百万计的运动障碍的人的生活,健康和舒适。制定各个步骤中考虑人类的政策,并通过多种方式从反馈中学习反馈将对许多其他人类机器人互动领域产生影响。该项目将从技术和算法的角度来推动机器人技术的辅助性远程处理。首先,将开发出新颖的咬合采集算法,这些算法能够在非结构化设置中拾取可变形的对象。其次,将开发出咬合转移算法,这些算法从机器人或餐具上提供的物理反馈中学习时,将食物转移到一个人的嘴里。最后,研究团队将开发积极和自适应的算法,这些算法利用其他数据来源(例如比较或语言说明),以明智地改善获取和转移算法并个性化喂养体验。这项工作利用了从多模式人类反馈中学习的想法 - 特别是通过拥抱身体互动而不是试图避免它们 - 更好地操纵和转移食物。辅助获取和转移算法将通过人类学科研究进行广泛评估。该算法将在各个实验室的多个高度自由度的机器人平台上实现。 Planned user studies and low-level implementations will advance the state of robotics outside of assistive feeding, particularly towards other ADLs or Instrumental ADLs (IADLs) in home settings, such as meal-preparation, cooking, and housework.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Siddhartha Srinivasa其他文献

Siddhartha Srinivasa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Siddhartha Srinivasa', 18)}}的其他基金

Travel: NSF Student Travel Grant for 2024 Human-Robot Interaction Pioneers Workshop (HRI)
旅行:2024 年人机交互先锋研讨会 (HRI) 的 NSF 学生旅行补助金
  • 批准号:
    2414275
  • 财政年份:
    2024
  • 资助金额:
    $ 50.5万
  • 项目类别:
    Standard Grant
CHS: Small: Towards Usability in Robotic Assistance: A Formalism for Robot-Assisted Feeding while Adjusting to User Preferences
CHS:小:迈向机器人辅助的可用性:机器人辅助喂养的形式主义,同时根据用户偏好进行调整
  • 批准号:
    2007011
  • 财政年份:
    2020
  • 资助金额:
    $ 50.5万
  • 项目类别:
    Standard Grant
NRI: Collaborative Research: Learning Deep Sensorimotor Policies for Shared Autonomy
NRI:协作研究:学习共享自主权的深度感觉运动策略
  • 批准号:
    1748582
  • 财政年份:
    2017
  • 资助金额:
    $ 50.5万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Learning control sharing strategies for assistive cyber-physical systems
CPS:协同:协作研究:辅助网络物理系统的学习控制共享策略
  • 批准号:
    1745561
  • 财政年份:
    2017
  • 资助金额:
    $ 50.5万
  • 项目类别:
    Standard Grant
NRI: Collaborative Research: Learning Deep Sensorimotor Policies for Shared Autonomy
NRI:协作研究:学习共享自主权的深度感觉运动策略
  • 批准号:
    1637748
  • 财政年份:
    2016
  • 资助金额:
    $ 50.5万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Learning control sharing strategies for assistive cyber-physical systems
CPS:协同:协作研究:辅助网络物理系统的学习控制共享策略
  • 批准号:
    1544797
  • 财政年份:
    2015
  • 资助金额:
    $ 50.5万
  • 项目类别:
    Standard Grant
NRI-Small: Collaborative Research: Addressing Clutter and Uncertainty for Robotic Manipulation in Human Environments
NRI-Small:协作研究:解决人类环境中机器人操作的混乱和不确定性
  • 批准号:
    1208388
  • 财政年份:
    2012
  • 资助金额:
    $ 50.5万
  • 项目类别:
    Standard Grant

相似国自然基金

临时团队协作历史对协作主动行为的影响研究:基于社会网络视角
  • 批准号:
    72302101
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
在线医疗团队协作模式与绩效提升策略研究
  • 批准号:
    72371111
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
  • 批准号:
    32302064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向人机接触式协同作业的协作机器人交互控制方法研究
  • 批准号:
    62373044
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

NRI/Collaborative Research: Robotic Disassembly of High-Precision Electronic Devices
NRI/合作研究:高精度电子设备的机器人拆卸
  • 批准号:
    2422640
  • 财政年份:
    2024
  • 资助金额:
    $ 50.5万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
  • 批准号:
    2327702
  • 财政年份:
    2023
  • 资助金额:
    $ 50.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Understanding Underlying Risks and Sociotechnical Challenges of Powered Wearable Exoskeleton to Construction Workers
合作研究:NRI:了解建筑工人动力可穿戴外骨骼的潜在风险和社会技术挑战
  • 批准号:
    2410255
  • 财政年份:
    2023
  • 资助金额:
    $ 50.5万
  • 项目类别:
    Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2348839
  • 财政年份:
    2023
  • 资助金额:
    $ 50.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Reducing Falling Risk in Robot-Assisted Retail Environments
合作研究:NRI:降低机器人辅助零售环境中的跌倒风险
  • 批准号:
    2132936
  • 财政年份:
    2022
  • 资助金额:
    $ 50.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了