Collaborative Research: CIF: Medium: Emerging Directions in Robust Learning and Inference

协作研究:CIF:媒介:稳健学习和推理的新兴方向

基本信息

  • 批准号:
    2106560
  • 负责人:
  • 金额:
    $ 37.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Future applications of national importance, such as healthcare, critical infrastructure, transportation systems, and smart cities, are expected to increasingly rely on machine-learning methods, including structured learning, supervised learning, and reinforcement learning. In many of these applications, the probabilistic distribution governing the data may undergo variations with time and location, and data could be corrupted by faulty or malicious agents/sensors. Such model deviation and data corruption could result in significant performance degradation. The goal in this project is to explore new ways to design learning and inference methods that are robust to distributional uncertainty and data corruption. This project is bridging and further advancing research in areas of statistical learning, optimization, control theory, network science, reinforcement learning, statistical signal processing and information theory. The methods developed are likely to have significant impact on a wide range of applications in areas of societal importance such as healthcare, transportation systems, smart grids, and smart cities. The investigators are co-organizing special sessions at conferences, workshops and symposia on robust learning and inference to disseminate the research outcomes of this project, formalize far-reaching research directions, identify new challenges in this emerging area, stimulate the development of original research ideas, and foster interdisciplinary collaborations. The investigators are committed to broadening participation of under-represented minorities and women both among the graduate and undergraduate students in computing and engineering. The investigators are enriching their current courses and further developing new courses on topics related to this project.This project is expected to make new contributions to the theory and practice of robust learning and inference. Several emerging directions are being investigated, including robust sketch-based learning, robust mean estimation, synthesis of confusing inputs to machine-learning models, robustness to distributional uncertainty at inference time, and robust model-free reinforcement learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
未来具有国家重要性的应用,例如医疗保健、关键基础设施、交通系统和智慧城市,预计将越来越依赖机器学习方法,包括结构化学习、监督学习和强化学习。在许多此类应用中,控制数据的概率分布可能会随着时间和位置的变化而变化,并且数据可能会被错误或恶意的代理/传感器损坏。这种模型偏差和数据损坏可能会导致性能显着下降。该项目的目标是探索新的方法来设计对分布不确定性和数据损坏具有鲁棒性的学习和推理方法。该项目正在弥合并进一步推进统计学习、优化、控制理论、网络科学、强化学习、统计信号处理和信息论领域的研究。所开发的方法可能会对医疗保健、交通系统、智能电网和智能城市等社会重要领域的广泛应用产生重大影响。研究人员正在会议、研讨会和研讨会上共同组织关于鲁棒学习和推理的特别会议,以传播该项目的研究成果,正式确定影响深远的研究方向,确定这一新兴领域的新挑战,促进原创研究思想的发展,并促进跨学科合作。研究人员致力于扩大计算机和工程专业研究生和本科生中代表性不足的少数族裔和女性的参与。研究人员正在丰富现有课程,并进一步开发与该项目相关主题的新课程。该项目有望为鲁棒学习和推理的理论和实践做出新的贡献。正在研究几个新兴方向,包括稳健的基于草图的学习、稳健的均值估计、机器学习模型的混淆输入的综合、推理时分布不确定性的稳健性以及稳健的无模型强化学习。该奖项反映了 NSF 的法定使命通过使用基金会的智力优点和更广泛的影响审查标准进行评估,并被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Model-Free Robust Average-Reward Reinforcement Learning
无模型鲁棒平均奖励强化学习
Kernel Robust Hypothesis Testing
内核稳健假设检验
A Robust and Constrained Multi-Agent Reinforcement Learning Electric Vehicle Rebalancing Method in AMoD Systems
AMoD 系统中鲁棒且受限的多智能体强化学习电动汽车再平衡方法
Data-Driven Robust Multi-Agent Reinforcement Learning
数据驱动的鲁棒多智能体强化学习
Policy Gradient Method For Robust Reinforcement Learning
鲁棒强化学习的策略梯度方法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shaofeng Zou其他文献

Asymptotic optimality of D-CuSum for quickest change detection under transient dynamics
D-CuSum 的渐近最优性用于瞬态动态下最快的变化检测
Linear Complexity Exponentially Consistent Tests for Outlying Sequence Detection
离群序列检测的线性复杂度指数一致测试
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuheng Bu;Shaofeng Zou;V. Veeravalli
  • 通讯作者:
    V. Veeravalli
Layered decoding and secrecy over degraded broadcast channels
降级广播信道的分层解码和保密
K-user degraded broadcast channel with secrecy outside a bounded range
K 用户降级广播信道,其保密性超出有限范围
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shaofeng Zou;Yingbin Liang;L. Lai;H. Poor;S. Shamai
  • 通讯作者:
    S. Shamai
Sequential (Quickest) Change Detection: Classical Results and New Directions
顺序(最快)变化检测:经典结果和新方向

Shaofeng Zou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shaofeng Zou', 18)}}的其他基金

CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
  • 批准号:
    2337375
  • 财政年份:
    2024
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Continuing Grant
CCSS: Collaborative Research: Quickest Threat Detection in Adversarial Sensor Networks
CCSS:协作研究:对抗性传感器网络中最快的威胁检测
  • 批准号:
    2112693
  • 财政年份:
    2021
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Standard Grant
CIF: Small: Reinforcement Learning with Function Approximation: Convergent Algorithms and Finite-sample Analysis
CIF:小型:带有函数逼近的强化学习:收敛算法和有限样本分析
  • 批准号:
    2007783
  • 财政年份:
    2020
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Standard Grant
CRII: CIF: Dynamic Network Event Detection with Time-Series Data
CRII:CIF:使用时间序列数据进行动态网络事件检测
  • 批准号:
    1948165
  • 财政年份:
    2020
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Standard Grant

相似国自然基金

基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
  • 批准号:
    82300430
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
  • 批准号:
    72302067
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
  • 批准号:
    62371157
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向开放域对话系统信息获取的准确性研究
  • 批准号:
    62376067
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403123
  • 财政年份:
    2024
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326621
  • 财政年份:
    2024
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了