Collaborative Research: CNS Core: Medium: Dynamic Data-driven Systems - Theory and Applications
合作研究:CNS 核心:媒介:动态数据驱动系统 - 理论与应用
基本信息
- 批准号:2106403
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modern computer systems must be continually optimized in a data-driven manner to maintain performance, even as their deployment and workload environments change. This holds for traditional systems like content delivery networks and emerging architectures such as edge/cloud systems. The design of dynamic data-driven systems requires both theoretical advancements and new systems architectures. A key challenge is a tradeoff between optimality, i.e., choosing an optimal deployment for the current environment in terms of performance and/or cost, and smoothness, i.e., ensuring that the deployment changes are not too costly at any point. This project seeks to develop tools at the intersection of machine learning and optimization that enable systems to balance between optimality and smoothness. Further, this project deploys and empirically evaluates these tools in the context of 360 video streaming as a representative case study. Smoothness is not a traditional system performance measure, and so it is typically enforced only in ad hoc ways by existing systems. However, it is a crucial consideration for systems that seek to continuously optimize their configuration since the switching costs associated with changing configurations can be significant. Managing the tradeoff between optimality and smoothness in a rigorous fashion can lead to dramatic improvements; however, it is challenging since it requires a robust data-driven design that can determine whether it is worth incurring a switching cost in the present, without knowledge of the future environment. This project develops analytic tools that enable the design of algorithms for dynamic systems that balance optimality and smoothness through the integration of data-driven and optimization approaches. There are also planned test-bed deployment activities for 360 video streaming. The project will provide new foundational tools for the design of dynamic systems across multiple application areas. While we choose video streaming as our target application, the proposed fundamental research is applicable much more broadly. Notably, this project broadens the participation of underrepresented groups in STEM areas through programs at both K-12 and undergraduate levels. Planned activities include developing accelerated mathematics programs for middle-school students, summer programs for middle-school and high-school students, and summer research programs for undergraduate students. This is a collaborative project with investigators from the University of Massachusetts Amherst, California Institute of Technology, and the State University of New York at Stony Brook. The results of this project will be maintained on the project website at https://groups.cs.umass.edu/hajiesmaili/soco/. These will include technical reports of the research findings, software prototypes of the algorithms designed, datasets, and experimental results collected for the 360 video streaming experiments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代计算机系统必须以数据驱动的方式持续优化,以保持性能,即使其部署和工作负载环境发生变化。这适用于内容交付网络等传统系统和边缘/云系统等新兴架构。动态数据驱动系统的设计需要理论进步和新的系统架构。一个关键的挑战是在最优性(即在性能和/或成本方面为当前环境选择最佳部署)与平滑性(即确保部署更改在任何时候都不会太昂贵)之间进行权衡。该项目旨在开发机器学习和优化交叉点的工具,使系统能够在最优性和平滑性之间取得平衡。此外,该项目在 360 度视频流的背景下部署和实证评估这些工具作为代表性案例研究。平滑度不是传统的系统性能衡量标准,因此通常仅由现有系统以临时方式强制执行。然而,对于寻求持续优化其配置的系统来说,这是一个至关重要的考虑因素,因为与更改配置相关的切换成本可能很高。以严格的方式管理最优性和平滑性之间的权衡可以带来显着的改进;然而,它具有挑战性,因为它需要强大的数据驱动设计,可以在不了解未来环境的情况下确定当前是否值得承担转换成本。该项目开发的分析工具能够设计动态系统的算法,通过数据驱动和优化方法的集成来平衡最优性和平滑性。还计划进行 360 度视频流测试台部署活动。该项目将为跨多个应用领域的动态系统设计提供新的基础工具。虽然我们选择视频流作为我们的目标应用,但所提出的基础研究适用范围更广泛。值得注意的是,该项目通过 K-12 和本科生级别的项目扩大了 STEM 领域代表性不足群体的参与。计划的活动包括为中学生开发加速数学课程、为初中生和高中生开设暑期课程以及为本科生开设暑期研究计划。这是与马萨诸塞大学阿默斯特分校、加州理工学院和纽约州立大学石溪分校的研究人员合作的项目。该项目的结果将保存在项目网站上:https://groups.cs.umass.edu/hajiesmaili/soco/。这些将包括研究成果的技术报告、设计的算法的软件原型、数据集以及为 360 个视频流实验收集的实验结果。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值进行评估,被认为值得支持以及更广泛的影响审查标准。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Competitive Control with Delayed Imperfect Information
延迟不完全信息的竞争控制
- DOI:10.23919/acc53348.2022.9867421
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Yu, Chenkai;Shi, Guanya;Chung, Soon;Yue, Yisong;Wierman, Adam
- 通讯作者:Wierman, Adam
Communication-aware scheduling of precedence-constrained tasks on related machines
相关机器上优先级受限任务的通信感知调度
- DOI:10.1016/j.orl.2023.11.001
- 发表时间:2023-11
- 期刊:
- 影响因子:1.1
- 作者:Su, Yu;Vardi, Shai;Ren, Xiaoqi;Wierman, Adam
- 通讯作者:Wierman, Adam
Optimal robustness-consistency tradeoffs for learning-augmented metrical task systems
学习增强度量任务系统的最佳鲁棒性-一致性权衡
- DOI:
- 发表时间:2023-04
- 期刊:
- 影响因子:0
- 作者:Nicolas Christianson; Junxuan Shen
- 通讯作者:Junxuan Shen
Minimization Fractional Prophet Inequalities for Sequential Procurement
顺序采购的分数先知不等式最小化
- DOI:10.1287/moor.2021.173
- 发表时间:2023-06
- 期刊:
- 影响因子:1.7
- 作者:Qin, Junjie;Vardi, Shai;Wierman, Adam
- 通讯作者:Wierman, Adam
Chasing convex bodies and functions with black-box advice
用黑盒建议追逐凸体和函数
- DOI:
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Nicolas Christianson; Tinashe Handina
- 通讯作者:Tinashe Handina
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Wierman其他文献
Best of Both Worlds Guarantees for Smoothed Online Quadratic Optimization
平滑在线二次优化的两全其美保证
- DOI:
10.1145/3663652.3663655 - 发表时间:
2023-10-31 - 期刊:
- 影响因子:0
- 作者:
Neelkamal Bhuyan;Debankur Mukherjee;Adam Wierman - 通讯作者:
Adam Wierman
Learning the Uncertainty Sets for Control Dynamics via Set Membership: A Non-Asymptotic Analysis
通过集合隶属度学习控制动力学的不确定性集:非渐近分析
- DOI:
10.48550/arxiv.2309.14648 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Yingying Li;Jingtao Yu;Lauren Conger;Adam Wierman - 通讯作者:
Adam Wierman
Anytime-Competitive Reinforcement Learning with Policy Prior
具有策略先验的随时竞争性强化学习
- DOI:
10.48550/arxiv.2311.01568 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:0
- 作者:
Jianyi Yang;Pengfei Li;Tongxin Li;Adam Wierman;Shaolei Ren - 通讯作者:
Shaolei Ren
Distributionally Robust Constrained Reinforcement Learning under Strong Duality
强对偶下的分布鲁棒约束强化学习
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Zhengfei Zhang;Kishan Panaganti;Laixi Shi;Yanan Sui;Adam Wierman;Yisong Yue - 通讯作者:
Yisong Yue
Pricing Uncertainty in Stochastic Multi-Stage Electricity Markets
随机多阶段电力市场的定价不确定性
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Lucien Werner;Nicolas H. Christianson;Alessandro Zocca;Adam Wierman;Steven H. Low - 通讯作者:
Steven H. Low
Adam Wierman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Wierman', 18)}}的其他基金
Collaborative Research: CNS Core: Small: Optimizing Large-Scale Heterogeneous ML Platforms
合作研究:CNS Core:小型:优化大规模异构机器学习平台
- 批准号:
2146814 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: NGSDI: CarbonFirst: A Sustainable and Reliable Carbon-Centric Cloud-Edge Software Infrastructure
合作研究:NGSDI:CarbonFirst:可持续且可靠的以碳为中心的云边缘软件基础设施
- 批准号:
2105648 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Collaborative Research: CPS: Medium: Enabling DER Integration via Redesign of Information Flows
协作研究:CPS:中:通过重新设计信息流实现 DER 集成
- 批准号:
2136197 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Beyond Stability: Performance, Efficiency and Disturbance Management for Smart Infrastructure Systems
CPS:协同:协作研究:超越稳定性:智能基础设施系统的性能、效率和干扰管理
- 批准号:
1545096 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
NeTS: Large: Networked Markets: Theory and Applications
NeTS:大型:网络市场:理论与应用
- 批准号:
1518941 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CSR: Small:Collaborative Research: Data Center Demand Response: Coordinating the Cloud and the Smart Grid
CSR:小型:协作研究:数据中心需求响应:协调云和智能电网
- 批准号:
1319820 - 财政年份:2013
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: A Unified Approach to Quantifying Market Power in the Future Grid
协作研究:量化未来电网市场力量的统一方法
- 批准号:
1307794 - 财政年份:2013
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
ICES: Small: A Revealed Preference Approach to Computational Complexity in Economics
ICES:小:经济学中计算复杂性的显示偏好方法
- 批准号:
1101470 - 财政年份:2011
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CAREER: Towards a rigorous foundation for scheduling in modern systems
职业生涯:为现代系统中的调度奠定严格的基础
- 批准号:
0846025 - 财政年份:2009
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似国自然基金
LncMOB3A-2编码多肽在肠外致病性大肠杆菌入侵中枢神经系统中的作用机制研究
- 批准号:32302954
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
S100A9作为万古霉素儿童中枢神经系统抗感染个体化治疗预测因子的机制研究和量效分析
- 批准号:82304631
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
失重效应影响中枢神经系统药物脑空间分布及药动学的机制和调控研究
- 批准号:82373939
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
染色质重塑因子CHD3调控中枢神经系统少突胶质细胞发育的机制研究
- 批准号:82301950
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于人体镜像中枢神经系统和信任度的假肢互适应机制研究
- 批准号:62363006
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: CISE-MSI: RCBP-RF: CNS: ESD4CDaT - Efficient System Design for Cancer Detection and Treatment
合作研究:CISE-MSI:RCBP-RF:CNS:ESD4CDaT - 癌症检测和治疗的高效系统设计
- 批准号:
2318573 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Accelerating Serverless Cloud Network Performance
协作研究:CNS 核心:小型:加速无服务器云网络性能
- 批准号:
2229454 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Center of Biomedical Research Excellence in CNS Metabolism
中枢神经系统代谢生物医学卓越研究中心
- 批准号:
10557542 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2406598 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant