ICES: Small: A Revealed Preference Approach to Computational Complexity in Economics
ICES:小:经济学中计算复杂性的显示偏好方法
基本信息
- 批准号:1101470
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-05-01 至 2014-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the foundational tasks for the emerging interaction between computer science and economics is to incorporate "computation" into classic economic theories. As results have emerged, it has become clear that many of the standard economic models involve solving, in the worst-case, computationally hard problems. These results are often viewed as harsh critiques of the economic models, since it seems unreasonable to model agents as solving computationally hard problems. However, economists have, in general, resisted such critiques. The core of the current proposal is that this resistance stems not from a refusal to consider computational restrictions, but instead from a different perspective on the models themselves -- an "empirical" perspective as opposed to an "algorithmic" perspective. Specifically, an algorithmic view of the model assumes the model is fixed and literal and then proceeds to ask about the demands placed on the agents by the model. In contrast, an empirical view of the model does not presume agents actually follow the model, only that the model provides a way to explain the observed behavior, i.e., the data. A model still loses credibility if the agents must solve computationally hard problems; however, standard worst-case complexity is no longer the relevant concept. This proposal seeks to formalize and study this empirical view of how to incorporate computation into economic models. This new view is strongly motivated by the revealed preference literature in economics, which seeks to understand how generally a model is applicable. Our proposed empirical view of computational complexity adds to revealed preference theory the constraint that the instance revealed does not require agents to solve any computationally hard problems. Thus, the question becomes: Do computational constraints have empirical consequences for economic models? We propose to address this question across a range of classic economic models, including consumer choice theory, Walrasian (general) equilibrium theory, Nash equilibrium theory, and the theory of stable matchings.This proposal sets an ambitious goal, and it is one that presents true opportunities for interdisciplinary dialogue. Such a dialogue presents an opportunity to rethink traditional economic models with an eye toward computation, which will shed a new light on the predictive power of the foundational theories of economics. In addition to the research components of this work, the PIs have a history of, and will continue to, facilitate the increasing interaction of computer science and economics through a variety of educational activities including (i) teaching new interdisciplinary courses at the undergraduate and graduate levels, (ii) advising interdisciplinary research at the undergraduate, graduate, and postdoctoral levels, and (iii) organizing annual joint workshops with other universities in southern California and with industry partners.
计算机科学与经济学之间新兴互动的基本任务之一是将“计算”纳入经典经济理论。 随着结果的出现,我们可以清楚地看到,许多标准经济模型都涉及解决最坏情况下的计算困难问题。 这些结果通常被视为对经济模型的严厉批评,因为将代理建模为解决计算难题似乎是不合理的。然而,经济学家总体上抵制此类批评。 当前提案的核心是,这种阻力并非源于拒绝考虑计算限制,而是源于对模型本身的不同视角——与“算法”视角相反的“经验”视角。具体来说,模型的算法视图假设模型是固定的和字面的,然后继续询问模型对代理提出的要求。 相比之下,模型的经验观点并不假定主体实际上遵循模型,只是模型提供了一种解释观察到的行为(即数据)的方法。 如果智能体必须解决计算难题,模型仍然会失去可信度;然而,标准的最坏情况复杂性不再是相关概念。该提案旨在形式化并研究如何将计算纳入经济模型的经验观点。这种新观点受到经济学中揭示偏好文献的强烈推动,该文献试图了解模型的普遍适用性。我们提出的计算复杂性的经验观点为显示偏好理论添加了约束,即实例显示不需要代理解决任何计算难题。 因此,问题变成:计算约束对经济模型有经验影响吗?我们建议通过一系列经典经济模型来解决这个问题,包括消费者选择理论、瓦尔拉斯(一般)均衡理论、纳什均衡理论和稳定匹配理论。这个提议设定了一个雄心勃勃的目标,它提出了一个目标跨学科对话的真正机会。 这样的对话提供了一个从计算角度重新思考传统经济模型的机会,这将为经济学基础理论的预测能力提供新的视角。 除了这项工作的研究部分之外,PI 过去一直并将继续通过各种教育活动促进计算机科学和经济学之间日益加强的互动,包括 (i) 在本科生和研究生中教授新的跨学科课程(ii) 为本科生、研究生和博士后水平的跨学科研究提供建议,以及 (iii) 与南加州其他大学和行业合作伙伴组织年度联合研讨会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Wierman其他文献
Best of Both Worlds Guarantees for Smoothed Online Quadratic Optimization
平滑在线二次优化的两全其美保证
- DOI:
10.1145/3663652.3663655 - 发表时间:
2023-10-31 - 期刊:
- 影响因子:0
- 作者:
Neelkamal Bhuyan;Debankur Mukherjee;Adam Wierman - 通讯作者:
Adam Wierman
Learning the Uncertainty Sets for Control Dynamics via Set Membership: A Non-Asymptotic Analysis
通过集合隶属度学习控制动力学的不确定性集:非渐近分析
- DOI:
10.48550/arxiv.2309.14648 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Yingying Li;Jingtao Yu;Lauren Conger;Adam Wierman - 通讯作者:
Adam Wierman
Anytime-Competitive Reinforcement Learning with Policy Prior
具有策略先验的随时竞争性强化学习
- DOI:
10.48550/arxiv.2311.01568 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:0
- 作者:
Jianyi Yang;Pengfei Li;Tongxin Li;Adam Wierman;Shaolei Ren - 通讯作者:
Shaolei Ren
Distributionally Robust Constrained Reinforcement Learning under Strong Duality
强对偶下的分布鲁棒约束强化学习
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Zhengfei Zhang;Kishan Panaganti;Laixi Shi;Yanan Sui;Adam Wierman;Yisong Yue - 通讯作者:
Yisong Yue
Pricing Uncertainty in Stochastic Multi-Stage Electricity Markets
随机多阶段电力市场的定价不确定性
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Lucien Werner;Nicolas H. Christianson;Alessandro Zocca;Adam Wierman;Steven H. Low - 通讯作者:
Steven H. Low
Adam Wierman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Wierman', 18)}}的其他基金
Collaborative Research: CNS Core: Small: Optimizing Large-Scale Heterogeneous ML Platforms
合作研究:CNS Core:小型:优化大规模异构机器学习平台
- 批准号:
2146814 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: NGSDI: CarbonFirst: A Sustainable and Reliable Carbon-Centric Cloud-Edge Software Infrastructure
合作研究:NGSDI:CarbonFirst:可持续且可靠的以碳为中心的云边缘软件基础设施
- 批准号:
2105648 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Medium: Dynamic Data-driven Systems - Theory and Applications
合作研究:CNS 核心:媒介:动态数据驱动系统 - 理论与应用
- 批准号:
2106403 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Enabling DER Integration via Redesign of Information Flows
协作研究:CPS:中:通过重新设计信息流实现 DER 集成
- 批准号:
2136197 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Beyond Stability: Performance, Efficiency and Disturbance Management for Smart Infrastructure Systems
CPS:协同:协作研究:超越稳定性:智能基础设施系统的性能、效率和干扰管理
- 批准号:
1545096 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
NeTS: Large: Networked Markets: Theory and Applications
NeTS:大型:网络市场:理论与应用
- 批准号:
1518941 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CSR: Small:Collaborative Research: Data Center Demand Response: Coordinating the Cloud and the Smart Grid
CSR:小型:协作研究:数据中心需求响应:协调云和智能电网
- 批准号:
1319820 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: A Unified Approach to Quantifying Market Power in the Future Grid
协作研究:量化未来电网市场力量的统一方法
- 批准号:
1307794 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Towards a rigorous foundation for scheduling in modern systems
职业生涯:为现代系统中的调度奠定严格的基础
- 批准号:
0846025 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
ALKBH5介导的SOCS3-m6A去甲基化修饰在颅脑损伤后小胶质细胞炎性激活中的调控作用及机制研究
- 批准号:82301557
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
miRNA前体小肽miPEP在葡萄低温胁迫抗性中的功能研究
- 批准号:
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:
PKM2苏木化修饰调节非小细胞肺癌起始细胞介导的耐药生态位的机制研究
- 批准号:82372852
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于翻译组学理论探究LncRNA H19编码多肽PELRM促进小胶质细胞活化介导电针巨刺改善膝关节术后疼痛的机制研究
- 批准号:82305399
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CLDN6高表达肿瘤细胞亚群在非小细胞肺癌ICB治疗抗性形成中的作用及机制研究
- 批准号:82373364
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Molecular insights into food physical property revealed by quantum beam structural analysis in conjunction with rheology measurements
量子束结构分析结合流变学测量揭示了对食品物理特性的分子洞察
- 批准号:
22K05511 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
International relations of education reform in the Meiji era revealed from students' science notes
从学生科普笔记看明治时代教育改革的国际关系
- 批准号:
17K01022 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mechanisms of Transcriptional Control Revealed by Nascent Transcript Sequencing
新生转录本测序揭示的转录控制机制
- 批准号:
9762140 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Molecular details of HIV fusion revealed using novel gp41 labeling
使用新型 gp41 标记揭示 HIV 融合的分子细节
- 批准号:
8707959 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Mechanisms of Transcriptional Control Revealed by Nascent Transcript Sequencing
新生转录本测序揭示的转录控制机制
- 批准号:
10171878 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别: