EAGER: Polymer Sponge Electrodes for Energy-Efficient Desalination
EAGER:用于节能海水淡化的聚合物海绵电极
基本信息
- 批准号:2131282
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Current seawater desalination technology is energy-intensive and costly, limiting our ability to generate clean water for an increasing global population. In recent years, researchers have explored a new concept based on the removal of salt from seawater using a battery-like device where salt water flows into the device, salt ions bind to electrodes within the device, and fresh water flows out. One would expect this technology, called capacitive deionization (CDI), to maximize the energy efficiency of desalination by recovering input energy through discharge of the electrodes—similar to charging and discharging a battery. However, the performance of CDI devices has not yet been competitive for seawater desalination. Researchers at the University of Missouri will work to understand the origins of the poor performance of CDI electrodes for seawater desalination and overcome these limitations to boost the energy efficiency of CDI. The investigators will decouple and independently study the two main factors thought to drive CDI inefficiency – low ion uptake capacity and slow ion transport within CDI electrodes. Electrically conductive coatings that bind large amounts of ions will be used to control the ion uptake capacity of electrodes, while a soft, compressible electrode matrix will be used to control the rate of ion transport within the electrodes using mechanical compression during charging. This work will fill a critical gap in understanding how electrode design aspects are coupled with physical processes to drive CDI performance. The outcomes of this project will define the most promising avenues for investigation in pursuit of the next generation of desalination technology.This project will establish a new modality of CDI electrode that integrates high-rate, faradaic surface reactions for rapid ion uptake within a soft, compressible sponge substrate for rapid ion transport within the CDI electrode through mechanical compression of the sponge. To generate these electrodes, researchers will employ established molecular layer deposition (MLD) chemistry using sequential reaction of gas-phase precursors to impregnate microporous polyurethane (PU) foams with electrically-conductive and redox-active polyethylenedioxythiophene (PEDOT) coatings. The project will (1) study key synthesis aspects enabling the fabrication of compressible CDI electrodes and (2) benchmark what level of CDI efficiency can be delivered from compressible electrodes. Researchers will study the impact of PEDOT thickness, foam void volume, and compression rate on the energy efficiency of ion uptake. This work will help researchers understand and overcome the barriers limiting the performance of existing CDI electrodes, potentially enabling CDI to outperform current seawater desalination technology and providing low-cost, clean water to help address global water scarcity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当前的海水脱盐技术是能源密集型且昂贵的,限制了我们为越来越多的全球人口产生清洁水的能力。近年来,研究人员探索了一个新概念,该概念是基于使用电池般的设备从海水中除去盐,盐水流入设备,盐离子与设备中的电极结合,然后淡水流出。人们会期望这项技术称为电容脱位(CDI),可以通过排放电子来恢复输入能量来最大化海水淡化的能源效率,例如电荷和放电电池。但是,CDI设备的性能尚未在海水脱盐方面具有竞争力。密苏里大学的研究人员将努力了解CDI电子对海水脱盐性能不佳的起源,并克服这些局限性,以提高CDI的能源效率。研究人员将分离并独立研究这两个主要因素被认为促进CDI效率低下的主要因素 - 低离子摄取能力和CDI电极内的离子慢速传输。结合大量离子的导电涂层将用于控制电极的离子摄取能力,而柔软的,可压缩的电极矩阵将用于在充电过程中使用机械压缩来控制电极内的离子传输速率。这项工作将填补一个关键的空白,以了解电极设计方面以及如何推动CDI性能的物理过程。该项目的结果将定义用于追求下一代脱盐技术投资的最有希望的途径。该项目将建立一种新的CDI电极模式,该模式将高速,法拉达的表面反应整合在柔软的,可压缩的赞助物底物中的快速离子反应,以通过CDI电极内部的机械构成Sponsor of Sponsor of Sponsor of Sponsor of Sponsor of Sponsor of Sponsor of Sponsor。为了产生这些电子,研究人员将使用气相前体的顺序反应采用建立的分子层沉积(MLD)化学,以将微孔聚氨酯(PU)泡沫与电导性和氧化还原活性的聚乙二醇化二甲基二硫代(PE)浸入。该项目将(1)研究可以制造可压缩CDI电子的关键合成方面,并且(2)基准从可压缩电极中传递哪种水平的CDI效率。研究人员将研究PEDOT厚度,泡沫空隙体积和压缩率对离子摄取能效的影响。 This work will help researchers understand and overcome the barriers limiting the performance of existing CDI electrodes, potentially enabling CDI to outperform current seawater desalination technology and providing low-cost, clean water to help address global water scarcity.This award reflects NSF's statutory mission and has been deemed precious of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Compressible sponge electrodes by oxidative molecular layer deposition (oMLD) of polyethylenedioxythiophene (PEDOT) onto open-cell polyurethane sponges
- DOI:10.1088/1361-6528/acef2b
- 发表时间:2023-08
- 期刊:
- 影响因子:3.5
- 作者:Mahya Mehregan;D. Stalla;Gabe Luebbert;Lauren Baratta;Katrina G. Brathwaite;Quinton K. Wyatt;Nikhila C Paranamana;M. Young
- 通讯作者:Mahya Mehregan;D. Stalla;Gabe Luebbert;Lauren Baratta;Katrina G. Brathwaite;Quinton K. Wyatt;Nikhila C Paranamana;M. Young
Oxidative Molecular Layer Deposition of Amine-Containing Conjugated Polymer Thin Films
含胺共轭聚合物薄膜的氧化分子层沉积
- DOI:10.1021/acsapm.2c00942
- 发表时间:2022
- 期刊:
- 影响因子:5
- 作者:Wyatt, Quinton K.;Vaninger, Mitchel;Paranamana, Nikhila C.;Heitmann, Thomas W.;Kaiser, Helmut;Young, Matthias J.
- 通讯作者:Young, Matthias J.
Mechanistic Insights into Oxidative Molecular Layer Deposition of Conjugated Polymers
共轭聚合物氧化分子层沉积的机理见解
- DOI:10.1021/acs.chemmater.2c02923
- 发表时间:2023
- 期刊:
- 影响因子:8.6
- 作者:Wyatt, Quinton K.;Brathwaite, Katrina G.;Ardiansyah, Muhammad;Paranamana, Nikhila C.;Brorsen, Kurt R.;Young, Matthias J.
- 通讯作者:Young, Matthias J.
Effects of film thickness on electrochemical properties of nanoscale polyethylenedioxythiophene (PEDOT) thin films grown by oxidative molecular layer deposition (oMLD)
- DOI:10.1039/d3nr00708a
- 发表时间:2023-03-02
- 期刊:
- 影响因子:6.7
- 作者:Brathwaite,Katrina G.;Wyatt,Quinton K.;Young,Matthias J.
- 通讯作者:Young,Matthias J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthias Young其他文献
Matthias Young的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthias Young', 18)}}的其他基金
CAREER: Molecular-level Understanding of Conductive Polymer Properties
职业:对导电聚合物特性的分子水平理解
- 批准号:
2235161 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
I-Corps: Molecular layer deposition for polymer cathode fabrication
I-Corps:用于聚合物阴极制造的分子层沉积
- 批准号:
2344900 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Understanding interphase layer formation at the cathode/solid-electrolyte junction
了解阴极/固体电解质连接处的界面层形成
- 批准号:
2219060 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
电活性藻结皮胞外聚合物及其在矿山原位修复中的微电场效应与机制
- 批准号:32370387
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于噻吩聚合物的电化学性能沉积高密度互连图形的研究
- 批准号:22302034
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
硫系聚合物基相位型中红外微光学元件的飞秒激光直写方法研究
- 批准号:62375224
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
无机熔融盐水合物解聚木质纤维全组分聚合物自组装凝胶化行为及其调控机制研究
- 批准号:22378036
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
过渡金属配合物-聚合物复合体系提升协同催化效率
- 批准号:22371063
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Molecular Control of Thermomechanics and Shape-Morphing of Dynamic Covalent Polymer Networks
热机械的分子控制和动态共价聚合物网络的形状变形
- 批准号:
2406256 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: atomistic characterization of protein-polymer conjugates
职业:蛋白质-聚合物缀合物的原子表征
- 批准号:
2339330 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CAREER: Thermal Transport in Polymer Nanofibers under Strain Modulation
职业:应变调制下聚合物纳米纤维的热传输
- 批准号:
2340208 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Removal of Perfluorinated Chemicals Using New Fluorinated Polymer Sorbents
使用新型氟化聚合物吸附剂去除全氟化化学品
- 批准号:
LP220100036 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Linkage Projects
Investigating heterojunction-based organic phototransistors and circuits using layer-by-layer coated highly-oriented polymer semiconductors
使用逐层涂覆的高取向聚合物半导体研究基于异质结的有机光电晶体管和电路
- 批准号:
24K17743 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Early-Career Scientists