Understanding interphase layer formation at the cathode/solid-electrolyte junction

了解阴极/固体电解质连接处的界面层形成

基本信息

  • 批准号:
    2219060
  • 负责人:
  • 金额:
    $ 53.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Improving the safety and performance of lithium-ion batteries is necessary to support a broad range of technologies from consumer electronics to electric vehicles. Current lithium-ion batteries employ organic liquid electrolytes that allow lithium ions to move rapidly between battery electrodes during charge and discharge. But these liquid electrolytes are flammable and allow for the growth of lithium metal tendrils (referred to as dendrites) between the electrodes, leading to the risk of short-circuiting and runaway cell reaction. Over the last 30 years, researchers have been working to develop solid electrolyte materials to replace liquid electrolytes in lithium-ion batteries for improved safety, lifetime, and energy density. However, these electrolyte materials fail rapidly in battery test cells. Researchers at the University of Missouri will work to understand the origins of failure in these electrolytes arising from reactions between the solid electrolyte and the cathode of the battery. To accomplish this, University of Missouri researchers will isolate and understand the individual contributions of different reactive species on the overall failure behavior using a combination of species-selective membrane coatings, electron microscopy, and electrochemical characterization. This research will fill a critical gap in understanding of the reactions that underpin failure of solid electrolytes and is expected to help researchers develop safer and higher performance batteries. These research activities will be complemented with the development of hands-on interactive learning modules to make electron microscopy measurements of battery interfaces tangible and engaging for early high-school students.This project will establish mechanistic understanding of interphase formation between oxide cathode materials and sulfide solid electrolytes. Researchers will employ advanced transmission electron microscopy and other complementary characterization techniques to observe interphase formation between nickel-cobalt-manganese (NMC) cathode powder and Li10GeP2S12 (LGPS) SE with and without nanoscale polymer membrane coatings formed on the NMC cathode using molecular layer deposition (MLD). These MLD membrane coatings are tunable as single or mixed conductors of electrons, cations, and anions and will help serve to isolate and understand each of these species’ contributions to interphase formation reactions. The project will (1) understand native cathode/solid electrolyte interphase formation versus the state of charge of the cathode, (2) understand the role of electrons, cations, and anions in cathode/electrolyte interphase formation, and (3) understand the impact of barrier coatings on solid state battery performance. This work will help researchers rationally propose solutions to block unwanted reactions while preserving desirable functional properties at the cathode/solid electrolyte interface.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
为了支持从消费电子到电动汽车的广泛技术,必须提高锂离子电池的安全性和性能。电流锂离子电池员工有机液体电解质,使锂离子在充电和放电过程中可以在电池电极之间迅速移动。但是这些液体电解质是可燃料的,可以在电子之间生长锂金属卷须(称为树突),从而导致短路和失控细胞反应的风险。在过去的30年中,研究人员一直在努力开发固体电解质材料,以替代锂离子电池中的液体电解质,以提高安全性,寿命和能量密度。但是,这些电解质材料在电池测试单元中迅速失效。密苏里大学的研究人员将努力了解这些电解质失败的起源,这是由固体电解质和电池阴极之间的反应引起的。为此,密苏里大学的研究人员将使用物种选择性膜涂层,电子显微镜和电化学表征的结合来隔离和了解不同反应性物种对整体失效行为的个人贡献。这项研究将填补了解固体电解质失败的反应的关键空白,并有望帮助研究人员开发更安全和更高的性能电池。这些研究活动将通过开发动手交互式学习模块的开发来完成,以使电池接口的电子显微镜测量有形,并为早期的高中生进行参与。该项目将建立对氧化物阴极材料和硫化物固体电解质之间相互作用形成的机械理解。研究人员将采用先进的透射电子显微镜和其他互补表征技术来观察与纳米级聚合物膜涂层和不含纳米级聚合物膜涂层的Nickel-Cobalt-Manganese(NMC)天导体粉与LI10GEP2S12(LGPS)SE之间的形成。这些MLD膜涂层可作为电子,阳离子和阴离子的单个或混合导体调谐,并将有助于隔离和理解这些物种对相间形成反应的贡献。该项目将(1)了解天然阴极/固体电解质相间的形成与阴极的电荷状态,(2)了解电子,阳离子和阴极在阴极/电解质相间相间形成中的作用,以及(3)了解屏障涂层对固态电池性能的影响。这项工作将帮助研究人员合理提出解决方案以阻止不需要的反应,同时在阴极/固体电解质接口处保留理想的功能性能。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响审查标准通过评估来诚实地对支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Measuring Local Atomic Structure Variations through the Depth of Ultrathin (<20 nm) ALD Aluminum Oxide: Implications for Lithium-Ion Batteries
  • DOI:
    10.1021/acsanm.2c02312
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Nikhila C Paranamana;Ryan C. Gettler;Henry D Koenig;S. Montgomery-Smith;Xiaoqing He;M. Young
  • 通讯作者:
    Nikhila C Paranamana;Ryan C. Gettler;Henry D Koenig;S. Montgomery-Smith;Xiaoqing He;M. Young
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthias Young其他文献

Matthias Young的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthias Young', 18)}}的其他基金

CAREER: Molecular-level Understanding of Conductive Polymer Properties
职业:对导电聚合物特性的分子水平理解
  • 批准号:
    2235161
  • 财政年份:
    2023
  • 资助金额:
    $ 53.77万
  • 项目类别:
    Continuing Grant
I-Corps: Molecular layer deposition for polymer cathode fabrication
I-Corps:用于聚合物阴极制造的分子层沉积
  • 批准号:
    2344900
  • 财政年份:
    2023
  • 资助金额:
    $ 53.77万
  • 项目类别:
    Standard Grant
EAGER: Polymer Sponge Electrodes for Energy-Efficient Desalination
EAGER:用于节能海水淡化的聚合物海绵电极
  • 批准号:
    2131282
  • 财政年份:
    2021
  • 资助金额:
    $ 53.77万
  • 项目类别:
    Standard Grant

相似国自然基金

基于多源勘察数据融合与概率分析的软硬相间地层滑坡演化机理研究
  • 批准号:
    42307257
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
气泡表面相变过程与多组分物质相间传质耦合特性研究
  • 批准号:
    52306191
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
低渗黏土场地压裂增渗机制及强化污染物相间传质抽提规律
  • 批准号:
    42377152
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
考虑移动接触线特性的粘弹性流体驱油两相渗流相间微界面动力学行为研究
  • 批准号:
    52374032
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
流态化异形颗粒集热过程相间作用机理及热流-流型匹配机制
  • 批准号:
    52376144
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Material design of rubber composite filled with particles by controlling interphase layer formed on nanoparticle surface
通过控制纳米颗粒表面形成的界面层进行颗粒填充橡胶复合材料的材料设计
  • 批准号:
    20K04159
  • 财政年份:
    2020
  • 资助金额:
    $ 53.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Electrochemistry of less-noble metal with surface layer-free interphase
表面无层界面相的次贵金属电化学
  • 批准号:
    19H02816
  • 财政年份:
    2019
  • 资助金额:
    $ 53.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Effects of interphase layer on mechanical properties of silicone rubber composite filled with nano-silica particles
界面层对纳米二氧化硅粒子填充硅橡胶复合材料力学性能的影响
  • 批准号:
    17K06053
  • 财政年份:
    2017
  • 资助金额:
    $ 53.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Restoration of Fecal Continence in Aging IAS
老年 IAS 患者大便失禁的恢复
  • 批准号:
    8214650
  • 财政年份:
    2008
  • 资助金额:
    $ 53.77万
  • 项目类别:
Restoration of Fecal Continence in Aging IAS
老年 IAS 患者大便失禁的恢复
  • 批准号:
    8368311
  • 财政年份:
    2008
  • 资助金额:
    $ 53.77万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了