CAREER: Molecular-level Understanding of Conductive Polymer Properties
职业:对导电聚合物特性的分子水平理解
基本信息
- 批准号:2235161
- 负责人:
- 金额:$ 65.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARY:Understanding how electricity and charged species (ions) flow through polymer materials is necessary to support the development of materials for improved water treatment technologies, chemical sensors, and batteries. Certain charged polymers are interesting in this area because they both conduct electricity and undergo electro-chemical reactions to bind ions from solutions. Theoretically, with improved understanding and refinements, charged polymers in this class could conduct electricity as well as metals, and store as much charge as materials used in lithium-ion batteries. But currently, these materials fall short of these theoretical limits. To date, scientists do not fully understand the fundamental factors limiting these polymers from achieving their theoretical potential. In this project, researchers at the University of Missouri will work to understand the molecular origins of electronic and ionic conductivity in these charged polymers. To accomplish this, University of Missouri researchers will use a new way of making these polymers that allows for the rapid generation of precisely controlled sequences of molecular building blocks (monomers) within the polymer chains. They will measure how different monomer sequences lead to interaction effects between monomers and drive changes in the flow of electrons and ions. This research will fill a critical gap in understanding the molecular-scale origins of electronic and ionic conductivity in charged polymers and is expected to help researchers develop improved materials for a range of applications including water treatment, chemical sensors, and battery technologies. These research activities will be complemented with the development of hands-on interactive learning modules to make the concepts surrounding the flow of electrons and ions through polymers tangible and engaging for elementary school students.TECHNICAL SUMMARY:This project will establish structure-property understanding connecting local and short-range (5 nm) structure of conjugated hetero-atom-containing copolymers with their electronic and ionic conductivity. Researchers will employ gas-phase oxidative molecular layer deposition (oMLD) synthesis to control the monomer sequence within copolymers containing two or more monomers of pyrrole, thiophene, furan, aniline, and related monomers, coupled with in situ characterization to monitor electrical properties during synthesis and chemical post-processing. Ex situ synchrotron and electron microscopy measurements will provide further insights into molecular structure origins of observed electronic and ionic transport properties. This project's overall goals are to: (1) understand mechanisms of electronic transport along copolymer chains, (2) understand mechanisms of anion transport through varying polymer coordination sites, and (3) engage the public and inspire young scientists with polymer research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:了解电力和带电物质(离子)如何流过聚合物材料对于支持改进水处理技术、化学传感器和电池的材料开发是必要的。某些带电聚合物在该领域很有趣,因为它们既导电又经历电化学反应以结合溶液中的离子。理论上,随着理解和改进的深入,此类带电聚合物可以像金属一样导电,并存储与锂离子电池中使用的材料一样多的电荷。但目前,这些材料还没有达到这些理论极限。迄今为止,科学家们尚未完全了解限制这些聚合物发挥其理论潜力的基本因素。在该项目中,密苏里大学的研究人员将致力于了解这些带电聚合物中电子和离子导电性的分子起源。为了实现这一目标,密苏里大学的研究人员将使用一种制造这些聚合物的新方法,该方法可以在聚合物链内快速生成精确控制的分子构建块(单体)序列。 他们将测量不同的单体序列如何导致单体之间的相互作用效应并驱动电子和离子流的变化。这项研究将填补了解带电聚合物中电子和离子电导率的分子尺度起源的关键空白,并有望帮助研究人员开发适用于水处理、化学传感器和电池技术等一系列应用的改进材料。这些研究活动将与动手互动学习模块的开发相辅相成,使围绕电子和离子在聚合物中流动的概念变得切实可行并吸引小学生。 技术摘要:该项目将建立结构-性质理解,将当地的联系起来以及含共轭杂原子共聚物的短程(5 nm)结构及其电子和离子电导率。研究人员将采用气相氧化分子层沉积(oMLD)合成来控制含有两种或多种吡咯、噻吩、呋喃、苯胺和相关单体的共聚物内的单体序列,并结合原位表征以监测合成过程中的电性能和化学后处理。非原位同步加速器和电子显微镜测量将进一步深入了解所观察到的电子和离子传输特性的分子结构起源。该项目的总体目标是:(1) 了解沿共聚物链的电子传输机制,(2) 了解通过不同聚合物配位位点的阴离子传输机制,以及 (3) 吸引公众并激励年轻科学家进行聚合物研究。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthias Young其他文献
Matthias Young的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthias Young', 18)}}的其他基金
I-Corps: Molecular layer deposition for polymer cathode fabrication
I-Corps:用于聚合物阴极制造的分子层沉积
- 批准号:
2344900 - 财政年份:2023
- 资助金额:
$ 65.67万 - 项目类别:
Standard Grant
Understanding interphase layer formation at the cathode/solid-electrolyte junction
了解阴极/固体电解质连接处的界面层形成
- 批准号:
2219060 - 财政年份:2022
- 资助金额:
$ 65.67万 - 项目类别:
Standard Grant
EAGER: Polymer Sponge Electrodes for Energy-Efficient Desalination
EAGER:用于节能海水淡化的聚合物海绵电极
- 批准号:
2131282 - 财政年份:2021
- 资助金额:
$ 65.67万 - 项目类别:
Standard Grant
相似国自然基金
食用真菌细胞核等级秩序及其分子调控机制的研究
- 批准号:32372789
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
酸调变等级孔Y型分子筛定制构筑及其催化木质纤维转化为糠醛的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
雌激素上调鸡等级前卵泡颗粒细胞DHCR7表达的分子机制及功能分析
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
等级孔纳米片层ZSM-5分子筛单晶的绿色制备及其MTP性能研究
- 批准号:
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
等级孔功能化分子筛材料及其高效催化应用研究
- 批准号:
- 批准年份:2020
- 资助金额:260 万元
- 项目类别:联合基金项目
相似海外基金
CAREER: Illuminating molecular-level effects in new plant-based nanocomposites for additive manufacturing by stereolithography
职业:通过立体光刻阐明用于增材制造的新型植物基纳米复合材料的分子水平效应
- 批准号:
2337946 - 财政年份:2024
- 资助金额:
$ 65.67万 - 项目类别:
Continuing Grant
2023 Neurotrophic Mechanisms in Health and Disease
2023 健康与疾病中的神经营养机制
- 批准号:
10654336 - 财政年份:2023
- 资助金额:
$ 65.67万 - 项目类别:
Investigating Cellular Senescence at the Single Cell Level
在单细胞水平上研究细胞衰老
- 批准号:
10606940 - 财政年份:2023
- 资助金额:
$ 65.67万 - 项目类别:
CAREER: Molecular-Level Behavior of Chromophores in Dissolved Organic Matter
职业:溶解有机物中发色团的分子水平行为
- 批准号:
2237194 - 财政年份:2023
- 资助金额:
$ 65.67万 - 项目类别:
Continuing Grant
CAREER: Enabling the Accurate Simulation of Multi-Dimensional Core-Level Spectroscopies in Molecular Complexes using Time-Dependent Density Functional Theory
职业:使用瞬态密度泛函理论实现分子复合物中多维核心级光谱的精确模拟
- 批准号:
2337902 - 财政年份:2023
- 资助金额:
$ 65.67万 - 项目类别:
Standard Grant