CAREER: atomistic characterization of protein-polymer conjugates
职业:蛋白质-聚合物缀合物的原子表征
基本信息
- 批准号:2339330
- 负责人:
- 金额:$ 64.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-05-01 至 2029-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical descriptionProtein-based materials have unique potential in both industrial and medical applications because they can be precisely tailored for specific tasks. However, the ability to fine-tune protein materials also makes them vulnerable to quickly falling apart and becoming useless. While proteins hold the promise to be powerful biological sensors or potent drugs able to treat a range of diseases, they often do not survive in the human body. The most promising method for making proteins more robust is to attach a polymer to them. This creates protein-polymer molecules that are joined together, where the polymer can shield the protein without changing its beneficial properties. This approach has led to several important drugs for treating inflammation and cancer. However, unlocking the potential to create many more biological materials or drugs made from protein-polymer conjugates has been very difficult. There are many different ways to build protein-polymer conjugates, with some being useful while others are not, and there is no guide for how they should be put together. The goal of this research is to advance the understanding of what makes some protein-polymer conjugates more robust and create rules so that they can be intentionally designed, which is crucial to unleashing their full potential as medicines, biological sensors, and new biological materials. The proposed research is integrated with an educational program that aims to provide an introduction and training on scientific techniques used to visualize proteins at the microscopic level as well as closely related scientific methods used to image the human body. The principle investigator will lead several hands-on workshops created for visits of high school and undergraduate students in partnership with the university precollegiate education and training center.Technical descriptionWhile protein-polymer conjugates are widely valued in materials research, their development is mostly empirical due to the lack of accurate molecular-level depictions of conjugates. The goal of this research is to experimentally provide atomistic descriptions of protein-polymer interactions that enhance the stability of conjugated proteins in biological materials. Conjugates are classified between two types based on their overall conformation and the degree to which the protein and polymer interact: ‘dumbbell’-like structures that are loosely connected or ‘shroud’-like structures that are more interwoven and show more persistent protein-polymer interactions. Macromolecular properties of the conjugated protein, including resistance to thermal and chemical denaturation, are expected to correlate with the three-dimensional conformation of the conjugate. It is hypothesized that the equilibrium between these two forms is determined by specific interactions between protein side chains and conjugated polymer. Conjugates exhibiting shroud-like interactions appear to possess unique and advantageous properties. The use of NMR will enable determination of the factors contributing to formation of shroud-like interactions and establish a set of quantitative principles for the design of protein-polymer conjugates with predictable properties. A deeper understanding of how polymers effectively stabilize proteins against thermal or chemical denaturation, will enable exploration of novel phenomena, such as leveraging polymer conjugation to rescue partially misfolded proteins and stabilize intractable proteins. Visualizing protein-polymer interactions at the atomistic level is crucial in unlocking the full potential of new polymer synthesis approaches and conjugation strategies, which are essential for utilizing biological materials in demanding environments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述蛋白质材料在工业和医学应用中都具有独特的潜力,因为它们可以针对特定任务进行精确定制,但是,微调蛋白质材料的能力也使它们很容易迅速分解并变得无用。有望成为强大的生物传感器或能够治疗一系列疾病的有效药物,但它们通常无法在人体内存活,使蛋白质变得更坚固的最有希望的方法是将聚合物附着在它们上。连接在一起的聚合物分子,其中聚合物可以在不改变其有益特性的情况下保护蛋白质,从而开发出了几种治疗炎症和癌症的重要药物。然而,释放更多由蛋白质-聚合物缀合物制成的生物材料或药物的潜力却非常困难。构建蛋白质-聚合物缀合物的方法有很多种,有些有用,有些则无用,并且没有关于如何将它们组合在一起的指南,这项研究的目的是增进对某些蛋白质-聚合物的形成原理的理解。缀合物更稳健并创建规则,以便对它们进行有意设计,这对于释放它们作为药物、生物传感器和新生物材料的全部潜力至关重要。拟议的研究与旨在提供用于科学技术的介绍和培训的教育计划相结合。首席研究员将与大学预科教育和培训中心合作,领导一些为高中生和本科生参观而举办的实践研讨会。技术说明蛋白质聚合物缀合物在材料研究中受到广泛重视,但由于缺乏准确的缀合物分子水平配方,其开发主要是经验性的。这项研究的目标是通过实验提供蛋白质-聚合物相互作用的原子描述,以增强缀合蛋白质的稳定性。生物材料根据其整体构象和蛋白质与聚合物相互作用的程度分为两种类型:松散连接的“哑铃”状结构或连接较多的“裹尸布”状结构。交织并显示出缀合蛋白的更持久的蛋白质-聚合物相互作用,包括耐热性和化学变性性,预计与缀合物的三维构象相关。通过蛋白质侧链和共轭聚合物之间的特定相互作用来确定,表现出护罩状相互作用的缀合物似乎具有独特和有利的特性,这将能够确定有助于形成的因素。类似裹尸布的相互作用,并建立一套用于设计具有可预测特性的蛋白质-聚合物蛋白质的定量原理,更深入地了解聚合物如何有效地稳定蛋白质以防止热或化学变性,将使对新现象的共轭探索成为可能,例如利用聚合物。通过缀合来拯救部分错误折叠的蛋白质并稳定难以处理的蛋白质,在原子水平上可视化蛋白质-聚合物相互作用对于释放新聚合物合成方法和缀合策略的全部潜力至关重要,这对于在生物材料中利用生物材料至关重要。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Eddy其他文献
Matthew Eddy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
RAPID: Biophysical characterization of the native SARS-CoV-2 virion by atomistic simulations
RAPID:通过原子模拟对天然 SARS-CoV-2 病毒体进行生物物理表征
- 批准号:
2027096 - 财政年份:2020
- 资助金额:
$ 64.3万 - 项目类别:
Standard Grant
Atomistic characterization of hydrogen trap sites in Zn-Ni coatings
Zn-Ni 涂层中氢陷阱位点的原子表征
- 批准号:
445894-2012 - 财政年份:2012
- 资助金额:
$ 64.3万 - 项目类别:
Engage Grants Program
Characterization of atomistic and electronic structures with ultra-high-resolution TEM (Z02)
使用超高分辨率 TEM 表征原子和电子结构 (Z02)
- 批准号:
202303230 - 财政年份:2011
- 资助金额:
$ 64.3万 - 项目类别:
Collaborative Research Centres
Sub-Surface Structural Damages in Laser-assisted Surface Nanostructuring: Experimental Characterization and Atomistic Modeling
激光辅助表面纳米结构中的次表面结构损伤:实验表征和原子建模
- 批准号:
0820747 - 财政年份:2008
- 资助金额:
$ 64.3万 - 项目类别:
Standard Grant
Rheological and atomistic characterization of liquid AL-SI alloys
液态 AL-SI 合金的流变学和原子学表征
- 批准号:
328547-2005 - 财政年份:2008
- 资助金额:
$ 64.3万 - 项目类别:
Collaborative Research and Development Grants