Collaborative Research: CCSS: Learning to Optimize: From New Algorithms to New Theory

合作研究:CCSS:学习优化:从新算法到新理论

基本信息

  • 批准号:
    2113904
  • 负责人:
  • 金额:
    $ 22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Solving machine learning (ML) problems requires efficient and scalable optimization algorithms. State-of-the-art general purpose algorithms often need to compute a large number of iterations and hence have limited applicability to real-time applications. To circumvent this shortcoming, learning to optimize (L2O) methods aim to learn a shorter (i.e., faster) optimization path over a task distribution at meta-training, based on the tasks’ common structures and a more global view of their geometries, and then apply the learned optimizer to new similar tasks at meta-testing. Despite extensive empirical success, the existing L2O methods perform well mainly on optimization tasks with similar structures, but likely perform poorly on out-of-distribution tasks. Furthermore, there has been little theory understanding the convergence and generalization of L2O algorithms. Thus, the proposed program will design novel L2O approaches, so that the trained optimizer can generalize to a broad range of practical tasks, particularly out-of-distribution tasks, and will have guaranteed convergence and generalization performance in L2O training and testing.Specifically, the proposed program will design new L2O approaches with both generalizability to out-of-distribution tasks and safeguarded feature for guaranteed worst-case convergence, will develop a theoretical framework for analyzing the convergence rate for L2O meta-training, and will provide comprehensive characterization of the generalization performance for L2O meta-testing. The new algorithms and theory will be evaluated over applications of on-device model adaptation in internet-of-things (IoT) systems, sparse recovery for images and wireless signals, and algorithmic adaptation in reconfiguration of communication systems. The project is anticipated to significantly mature the field of L2O, and provide training opportunities for a diverse group of students at the new intersection of optimization, machine learning, signal processing, and data science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
解决机器学习(ML)问题需要有效且可扩展的优化算法。最新的通用算法通常需要计算大量迭代,因此对实时应用程序的可应用性有限。为了避免这一缺点,学习优化(L2O)方法旨在根据任务的共同结构和对几何形状的更全局的看法,学习较短的(即更快)优化路径,然后将学习的优化器应用于Meta-testing的新型任务。尽管经验取得了广泛的成功,但现有的L2O方法主要在具有相似结构的优化任务上表现良好,但在分发任务上可能表现较差。此外,几乎没有理论理解L2O算法的融合和概括。拟议的计划将设计新颖的L2O方法,以便训练有素的优化器可以推广到各种各样的实际任务,尤其是分布式任务,并保证在L2O培训和测试中保证收敛性和概括性性能。具体而言,提议的计划将设计新的L2O方法,以确保范围内的AREDE SAFERISE AR DEARSTARE AR DEATERID SAFERED SAFERED SAFEREDS TEATER SAFERTIBERS TEATER SAFERD SEAFERDS TEATERS TEATERS WEATS TEATERING SERVARTS WESTIST SERVANTS WESSITITS造就,使得范围内的特征,分析L2O元训练的收敛速率以及新算法和理论的理论框架将在启用(IoT)系统中的设备模型适应(IoT)系统的应用中进行评估,图像和无线信号的稀疏恢复以及算法适应通信系统的算法适应。预计该项目将在L2O领域中显着成熟,并在新的优化,机器学习,信号处理和数据科学的交集中为潜水员组提供培训机会。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子和更广泛的影响审查标准来通过评估来通过评估来获得的支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuning You;Yue Cao;Tianlong Chen;Zhangyang Wang;Yang Shen
  • 通讯作者:
    Yuning You;Yue Cao;Tianlong Chen;Zhangyang Wang;Yang Shen
Learning to Optimize Differentiable Games
学习优化可微分游戏
Learning to Optimize: A Primer and A Benchmark
  • DOI:
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tianlong Chen;Xiaohan Chen;Wuyang Chen;Howard Heaton;Jialin Liu;Zhangyang Wang;W. Yin
  • 通讯作者:
    Tianlong Chen;Xiaohan Chen;Wuyang Chen;Howard Heaton;Jialin Liu;Zhangyang Wang;W. Yin
Learning to generalize provably in learning to optimize
在学习优化中学习可证明泛化
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhangyang Wang其他文献

Privacy-Preserving Deep Visual Recognition: An Adversarial Learning Framework and A New Dataset
保护隐私的深度视觉识别:对抗性学习框架和新数据集
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haotao Wang;Zhenyu Wu;Zhangyang Wang;Zhaowen Wang;Hailin Jin
  • 通讯作者:
    Hailin Jin
Expressive Gaussian Human Avatars from Monocular RGB Video
单眼 RGB 视频中富有表现力的高斯人体头像
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hezhen Hu;Zhiwen Fan;Tianhao Wu;Yihan Xi;Seoyoung Lee;Georgios Pavlakos;Zhangyang Wang
  • 通讯作者:
    Zhangyang Wang
A Novel Framework for 3D-2D Vertebra Matching
3D-2D 椎骨匹配的新框架
DynEHR: Dynamic adaptation of models with data heterogeneity in electronic health records
DynEHR:电子健康记录中数据异质性模型的动态适应
I Am Going MAD: Maximum Discrepancy Competition for Comparing Classifiers Adaptively
我要疯了:自适应比较分类器的最大差异竞赛

Zhangyang Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhangyang Wang', 18)}}的其他基金

Collaborative Research: III: Medium: A consolidated framework of computational privacy and machine learning
合作研究:III:媒介:计算隐私和机器学习的综合框架
  • 批准号:
    2212176
  • 财政年份:
    2022
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
CAREER: Learning Optimization Algorithms from Data: Interpretability, Reliability, and Scalability
职业:从数据中学习优化算法:可解释性、可靠性和可扩展性
  • 批准号:
    2145346
  • 财政年份:
    2022
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Collaborative Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
  • 批准号:
    2133861
  • 财政年份:
    2022
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: Enabling Intelligent Cameras in Internet-of-Things via a Holistic Platform, Algorithm, and Hardware Co-design
协作研究:通过整体平台、算法和硬件协同设计实现物联网中的智能相机
  • 批准号:
    2053272
  • 财政年份:
    2020
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
CRII: RI: Learning with Low-Quality Visual Data: Handling Both Passive and Active Degradations
CRII:RI:使用低质量视觉数据学习:处理被动和主动退化
  • 批准号:
    2053269
  • 财政年份:
    2020
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
  • 批准号:
    2053279
  • 财政年份:
    2020
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: Enabling Intelligent Cameras in Internet-of-Things via a Holistic Platform, Algorithm, and Hardware Co-design
协作研究:通过整体平台、算法和硬件协同设计实现物联网中的智能相机
  • 批准号:
    1934755
  • 财政年份:
    2019
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
  • 批准号:
    1937588
  • 财政年份:
    2019
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
CRII: RI: Learning with Low-Quality Visual Data: Handling Both Passive and Active Degradations
CRII:RI:使用低质量视觉数据学习:处理被动和主动退化
  • 批准号:
    1755701
  • 财政年份:
    2018
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
  • 批准号:
    2332172
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
  • 批准号:
    2332173
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Continuous Facial Sensing and 3D Reconstruction via Single-ear Wearable Biosensors
合作研究:CCSS:通过单耳可穿戴生物传感器进行连续面部传感和 3D 重建
  • 批准号:
    2401415
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: When RFID Meets AI for Occluded Body Skeletal Posture Capture in Smart Healthcare
合作研究:CCSS:当 RFID 与人工智能相遇,用于智能医疗保健中闭塞的身体骨骼姿势捕获
  • 批准号:
    2245607
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
  • 批准号:
    2319780
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了